23 research outputs found

    The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1.</p> <p>Results</p> <p>In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly.</p> <p>Conclusions</p> <p>This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.</p

    Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    Get PDF
    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis

    Development and application of lectin affinity selection for monitoring changes in glycoproteins with disease state

    No full text
    The major focus of the work in this thesis was to develop quantitative proteomic methods for the analysis of post translational modifications using a bottom-up approach including the optimization lectin selection of glycopeptides for proteomic applications. This thesis evaluated diagonal chromatography as a method for the identification of peptides containing post translational modifications such as phosphorylation and N-linked glycosylation. With a well chosen ion pairing agent, diagonal chromatography was able to differentiate between phosphorylated and non-phosphorylated peptides. However, diagonal chromatography proved to be unable to adequately identify glycopeptides therefore lectin affinity targeting was explored in this thesis. The optimal parameters for lectin selection of glycopeptides from a proteomic sample were determined including immobilization procedure, divalent cation concentration, and binding and elution buffer conditions. A serial lectin affinity selection was applied to a human pooled serum sample to determine the relative fucose content of serum proteins. Finally, lectin affinity selection for glycopeptides was applied to a canine model of arthritis to quantify changes in glycoproteins in sera that are potentially disease-associated. Inter-individual differences in protein concentration of serum proteins from two healthy individuals were compared to the differences between a healthy and arthritic individual. The healthy individuals showed relatively small changes in protein concentration between the two patients whereas; the arthritic individual demonstrated a large change in concentration of several cytokines

    Glycopeptidome of a Heavily N-Glycosylated Cell Surface Glycoprotein of \u3ci\u3eDictyostelium\u3c/i\u3e Implicated in Cell Adhesion

    Get PDF
    Genetic analysis has implicated the cell surface glycoprotein gp130 in cell interactions of the social amoeba Dictyostelium, and information about the utilization of the 18 N-glycosylation sequons present in gp130 is needed to identify critical molecular determinants of its activity. Various glycomics strategies, including mass spectrometry of native and derivatized glycans, monosaccharide analysis, exoglycosidase digestion, and antibody binding, were applied to characterize a nonanchored version secreted from Dictyostelium. s-gp130 is modified by a predominant Man8GlcNAc4 species containing bisecting and intersecting GlcNAc residues and additional high-mannose N-glycans substituted with sulfate, methyl-phosphate, and/or core R3-fucose. Site mapping confirmed the occupancy of 15 sequons, some variably, and glycopeptide analysis confirmed 14 sites and revealed extensive heterogeneity at most sites. Glycopeptide glycoforms ranged from Man6 to Man9, GlcNAc0-2 (peripheral), Fuc0-2 (including core α3 and peripheral), (SO4)0-1, and (MePO4)0-1, which represented elements of virtually the entire known cellular N-glycome as inferred from prior metabolic labeling and mass spectrometry studies. gp130, and a family of 14 related predicted glycoproteins whose polypeptide sequences are rapidly diverging in the Dictyostelium lineage, may contribute a functionally important shroud of high-mannose N-glycans at the interface of the amoebae with each other, their predators and prey, and the soil environment

    Parallel Comparison of N‑Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC

    No full text
    Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655

    Parallel Comparison of N‑Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC

    No full text
    Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655
    corecore