17 research outputs found

    Etiology of Diarrhea in Older Children, Adolescents and Adults: A Systematic Review

    Get PDF
    Diarrhea is an important cause of illness and death around the world and among people of all ages, but unfortunately we often do not know what specific bacterium or virus causes the illness. We conducted a review of the scientific literature with the goal of finding published studies that identified bacteria and viruses among patients with diarrhea in the community and in hospital settings. We initially found nearly 26,000 papers on this topic but narrowed the list to 22 studies that met all of our specific criteria for inclusion in our review. Among patients hospitalized for diarrhea, E coli and Vibrio cholerae were found in more than 49% of people living in middle income and poor countries. Among patients who sought care from their doctor on an outpatient basis, Salmonella spp., Shigella spp., and E. histolytica were most often found. In our review we focused on the differences in the distribution of pathogens between patients in inpatient vs. outpatient settings because these estimates may best approximate what we would expect to see if the distribution were applied to global estimates of diarrhea deaths vs. uncomplicated illnesses

    Population Pharmacokinetics of Liposomal Amphotericin B in Pediatric Patients with Malignant Diseases

    No full text
    A population pharmacokinetic model of liposomal amphotericin B (L-AmB) in pediatric patients with malignant diseases was developed and evaluated. Blood samples were collected from 39 pediatric oncology patients who received multiple doses of L-AmB with a dose range from 0.8 to 5.9 mg/kg of body weight/day. The patient cohort had an average age of 7 years (range, 0.2 to 17 years) and weighed an average of 28.8 ± 19.8 kg. Population pharmacokinetic analyses were performed with NONMEM software. Pharmacokinetic parameters, interindividual variability (IIV), between-occasion variability (BOV), and intraindividual variability were estimated. The influence of patient characteristics on the pharmacokinetics of L-AmB was explored. The final population pharmacokinetic model was evaluated by using a bootstrap sampling technique. The L-AmB plasma concentration-time data was described by a two-compartment pharmacokinetic model with zero-order input and first-order elimination. The population mean estimates of clearance (CL) and volume of distribution in the central compartment (V(1)) were 0.44 liters/h and 3.12 liters, respectively, and exhibited IIV (CL, 10%) and significant BOV (CL, 46% and V(1), 56%). The covariate models were CL (liters/h) = 0.44 · e(0.0152)( ·)((WT) (−) (21)()) and V(1) (liters) = 3.12 · e(0.0241)( · )((WT) (−) (21)), where WT is the patient's body weight (kg) centered on the study population cohort median of 21 kg. Model evaluation by the bootstrap procedure indicated that the full pharmacokinetic model was robust and parameter estimates were accurate. In conclusion, the pharmacokinetics of L-AmB in pediatric oncology patients were adequately described by the developed population model. The model has been evaluated and can be used in the design of rational dosing strategies for L-AmB antifungal therapy in this special population

    Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: Towards individualized dosing

    No full text
    Background and Objectives: The wide variability in pharmacokinetics of busulfan in children is one factor influencing outcomes such as toxicity and event-free survival.Ameta-analysis was conducted to describe the pharmacokinetics of busulfan in patients from 0.1 to 26 years of age, elucidate patient characteristics that explain the variability in exposure between patients and optimize dosing accordingly. Patients and Methods: Data were collected from 245 consecutive patients (from 3 to 100 kg) who underwent haematopoietic stem cell transplantation (HSCT) in four participating centres. The inter-patient, interoccasion and residual variability in the pharmacokinetics of busulfan were estimated with a population analysis using the nonlinear mixed-effects modelling software NONMEM VI. Covariates were selected on the basis of their known or theoretical relationships with busulfan pharmacokinetics and were plotted independently against the individual pharmacokinetic parameters and the weighted residuals of the model without covariates to visualize relations. Potential covariates were formally tested in the model. Results: In a two-compartment model, body weight was the most predictive covariate for clearance, volume of distribution and inter-compartmental clearance and explained 65%, 75% and 40% of the observed variability, respectively. The relationship between body weight and clearance was characterized best using an allometric equation with a scaling exponent that changed with body weight from 1.2 in neonates to 0.55 in young adults. This implies that an increase in body weight in neonates results in a larger increase in busulfan clearance than an increase in body weight in older children or adults. Clearance on the first day was 12% higher than that of subsequent days (p < 0.001). Inter-occasion variability on clearance was 15%between the 4 days. Based on the final pharmacokinetic-model, an individualized dosing nomogram was developed. Conclusions: The model-based individual dosing nomogram is expected to result in predictive busulfan exposures in patients ranging between 3 and 65 kg and thereby to a safer and more effective conditioning regimen for HSCT in children

    Precision dosing of intravenous busulfan in pediatric hematopoietic stem cell transplantation: Results from a multicenter population pharmacokinetic study

    Get PDF
    Busulfan (Bu) is a common component of conditioning regimens before hematopoietic stem cell transplantation (HSCT) and is known for high interpatient pharmacokinetic (PK) variability. This study aimed to develop and externally validate a multicentric, population PK (PopPK) model for intravenous Bu in pediatric patients before HSCT to first study the influence of glutathione-s-transferase A1 (GSTA1) polymorphisms on Bu's PK in a large multicentric pediatric population while accounting for fludarabine (Flu) coadministration and, second, to establish an individualized, model-based, first-dose recommendation for intravenous Bu that can be widely used in pediatric patients. The model was built using data from 302 patients from five transplantation centers who received a Bu-based conditioning regimen. External model validation used data from 100 patients. The relationship between body weight and Bu clearance (CL) was best described by an age-dependent allometric scaling of a body weight model. A stepwise covariate analysis identified Day 1 of Bu conditioning, GSTA1 metabolic groups based on GSTA1 polymorphisms, and Flu coadministration as significant covariates influencing Bu CL. The final model adequately predicted Bu first-dose CL in the external cohort, with 81% of predicted area under the curves within the therapeutic window. The final model showed minimal bias (mean prediction error, -0.5%; 95% confidence interval [CI], -3.1% to 2.0%) and acceptable precision (mean absolute prediction error percentage, 18.7%; 95% CI, 17.0%-20.5%) in Bu CL prediction for dosing. This multicentric PopPK study confirmed the influence of GSTA1 polymorphisms and Flu coadministration on Bu CL. The developed model accurately predicted Bu CL and first doses in an external cohort of pediatric patients
    corecore