160 research outputs found

    Development and function of the fetal adrenal.

    Get PDF
    The adrenal cortex undergoes multiple structural and functional rearrangements to satisfy the systemic needs for steroids during fetal life, postnatal development, and adulthood. A fully functional adrenal cortex relies on the proper subdivision in regions or 'zones' with distinct but interconnected functions, which evolve from the early embryonic stages to adulthood, and rely on a fine-tuned gene network. In particular, the steroidogenic activity of the fetal adrenal is instrumental in maintaining normal fetal development and growth. Here, we review and discuss the most recent advances in our understanding of embryonic and fetal adrenal development, including the known causes for adrenal dys-/agenesis, and the steroidogenic pathways that link the fetal adrenal with the hormone system of the mother through the fetal-placental unit. Finally, we discuss what we think are the major open questions in the field, including, among others, the impact of osteocalcin, thyroid hormone, and other hormone systems on adrenal development and function, and the reliability of rodents as models of adrenal pathophysiology

    Short-Term Effects of Elexacaftor/Tezacaftor/Ivacaftor Combination on Glucose Tolerance in Young People With Cystic Fibrosis—An Observational Pilot Study

    Get PDF
    BACKGROUND: The effect of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) on glucose tolerance and/or cystic-fibrosis-related diabetes (CFRD) is not well understood. We performed an observational study on the short-term effects of ELX/TEZ/IVA on glucose tolerance. METHODS: Sixteen adolescents with CF performed oral glucose tolerance tests (OGTT) before and 4–6 weeks after initiating ELX/TEZ/IVA therapy. A continuous glucose monitoring (CGM) system was used 3 days before until 7 days after starting ELX/TEZ/IVA treatment. RESULTS: OGTT categories improved after initiating ELX/TEZ/IVA therapy (p = 0.02). Glucose levels of OGTT improved at 60, 90, and 120 min (p < 0.05), whereas fasting glucose and CGM measures did not change. CONCLUSION: Shortly after initiating ELX/TEZ/IVA therapy, glucose tolerance measured by OGTT improved in people with CF. This pilot study indicates that ELX/TEZ/IVA treatment has beneficial effects on the endocrine pancreatic function and might prevent or at least postpone future CFRD

    Anti-MĂŒllerian hormone levels in girls and adolescents with Turner syndrome are related to karyotype, pubertal development and growth hormone treatment

    Get PDF
    STUDY QUESTION In girls and adolescents with Turner syndrome (TS), is there a correlation between serum AMH levels and karyotype, spontaneous puberty and other biochemical markers of ovarian function, or growth hormone (GH) therapy? SUMMARY ANSWER Serum anti-MĂŒllerian hormone (AMH) correlates with karyotype, pubertal development, LH, FSH and are measurable in a higher percentage of TS patients under GH therapy. WHAT IS KNOWN ALREADY Most girls with TS suffer from incomplete sexual development, premature ovarian failure and infertility due to abnormal ovarian folliculogenesis. Serum AMH levels reflect the ovarian reserve in females, even in childhood. STUDY DESIGN, SIZE, DURATION Cross-sectional study investigating 270 karyotype proven TS patients aged 0-20 years between 2009 and 2010. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Studies were conducted at three University Children's hospitals in Europe. Main outcome measures were clinical data concerning pubertal development as well as laboratory data including karyotype, serum AMH, LH, FSH, estradiol (E2), inhibin B and IGF. RESULTS AND THE ROLE OF CHANCE Serum AMH was detectable in 21.9% of all TS girls and correlated strongly with karyotypes. A measurable serum AMH was found in 77% of TS girls with karyotype 45,X/46,XX, in 25% with ‘other' karyotypes and in only 10% of 45,X TS girls. A strong relationship was also observed for measurable serum AMH and signs of spontaneous puberty such as breast development [adjusted odds ratio (OR) 19.3; 95% CI 2.1-175.6; P = 0.009] and menarche (crude OR 47.6; 95% CI 4.8-472.9; P = 0.001). Serum AMH correlated negatively with FSH and LH, but did not correlate with E2 and inhibin B. GH therapy increased the odds of having measurable AMH in TS (adjusted OR 4.1; 95% CI 1.9-8.8; P < 0.001). LIMITATIONS, REASONS FOR CAUTION The cross-sectional design of the study does not allow longitudinal interpretation of the data; for that further studies are needed. High percentage of non-measurable AMH levels in the cohort of TS require categorized analysis. WIDER IMPLICATIONS OF THE FINDINGS Serum AMH levels are a useful marker of the follicle pool and thus ovarian function in pediatric patients with TS. These findings are in line with the published literature. The finding that GH therapy may affect AMH levels is novel, but must be confirmed by future longitudinal studie

    Approach to the virilizing girl at puberty

    Get PDF
    Virilization is the medical term for describing a female who develops characteristics associated with male hormones (androgens) at any age, or when a newborn girl shows signs of prenatal male hormone exposure at birth. In girls, androgen levels are low during pregnancy and childhood. A first physiologic rise of adrenal androgens is observed at the age of 6 to 8 years and reflects functional activation of the zona reticularis of the adrenal cortex at adrenarche, manifesting clinically with first pubic and axillary hairs. Early adrenarche is known as “premature adrenarche.” It is mostly idiopathic and of uncertain pathologic relevance but requires the exclusion of other causes of androgen excess (eg, nonclassic congenital adrenal hyperplasia) that might exacerbate clinically into virilization. The second modest physiologic increase of circulating androgens occurs then during pubertal development, which reflects the activation of ovarian steroidogenesis contributing to the peripheral androgen pool. However, at puberty initiation (and beyond), ovarian steroidogenesis is normally devoted to estrogen production for the development of secondary female bodily characteristics (eg, breast development). Serum total testosterone in a young adult woman is therefore about 10- to 20-fold lower than in a young man, whereas midcycle estradiol is about 10- to 20-fold higher. But if androgen production starts too early, progresses rapidly, and in marked excess (usually more than 3 to 5 times above normal), females will manifest with signs of virilization such as masculine habitus, deepening of the voice, severe acne, excessive facial and (male typical) body hair, clitoromegaly, and increased muscle development. Several medical conditions may cause virilization in girls and women, including androgen-producing tumors of the ovaries or adrenal cortex, (non)classical congenital adrenal hyperplasia and, more rarely, other disorders (also referred to as differences) of sex development (DSD). The purpose of this article is to describe the clinical approach to the girl with virilization at puberty, focusing on diagnostic challenges. The review is written from the perspective of the case of an 11.5-year-old girl who was referred to our clinic for progressive, rapid onset clitoromegaly, and was then diagnosed with a complex genetic form of DSD that led to abnormal testosterone production from a dysgenetic gonad at onset of puberty. Her genetic workup revealed a unique translocation of an abnormal duplicated Y-chromosome to a deleted chromosome 9, including the Doublesex and Mab-3 Related Transcription factor 1 (DMRT1) gene

    Effects of 2-year physical activity and dietary intervention on adrenarchal and pubertal development: the PANIC study.

    Get PDF
    CONTEXT Childhood overweight has been linked to earlier development of adrenarche and puberty, but it remains unknown if lifestyle interventions influence sexual maturation in general populations. OBJECTIVE To investigate if a 2-year lifestyle intervention influences circulating androgen concentrations and sexual maturation in a general population of children. DESIGN AND PARTICIPANTS A 2-year intervention study in which 421 prepubertal and mostly normal-weight 6-9-year-old children were allocated either to a lifestyle intervention group (119 girls, 132 boys) or a control group (84 girls, 86 boys). INTERVENTION A 2-year physical activity and dietary intervention. MAIN OUTCOME MEASURES Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione, and testosterone concentrations, and clinical adrenarchal and pubertal signs. RESULTS The intervention and control groups had no differences in body size and composition, clinical signs of androgen action, and serum androgens at baseline. The intervention attenuated the increase of dehydroepiandrosterone (p = 0.032), dehydroepiandrosterone sulfate (p = 0.001), androstenedione (p = 0.003), and testosterone (p = 0.007) and delayed pubarche (p = 0.038) in boys but it only attenuated the increase of dehydroepiandrosterone (p = 0.013) and dehydroepiandrosterone sulfate (p = 0.003) in girls. These effects of lifestyle intervention on androgens and the development of pubarche were independent of changes in body size and composition but the effects of intervention on androgens were partly explained by changes in fasting serum insulin. CONCLUSIONS A combined physical activity and dietary intervention attenuates the increase of serum androgen concentrations and sexual maturation in a general population of prepubertal and mostly normal-weight children, independently of changes in body size and composition

    Characterization of Novel StAR (Steroidogenic Acute Regulatory Protein) Mutations Causing Non-Classic Lipoid Adrenal Hyperplasia

    Get PDF
    Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed

    Characterization of Novel StAR (Steroidogenic Acute Regulatory Protein) Mutations Causing Non-Classic Lipoid Adrenal Hyperplasia

    Get PDF
    Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed

    Characterization of Two Novel Variants of the Steroidogenic Acute Regulatory Protein Identified in a Girl with Classic Lipoid Congenital Adrenal Hyperplasia

    Get PDF
    Congenital adrenal hyperplasia (CAH) consists of several autosomal recessive disorders that inhibit steroid biosynthesis. We describe a case report diagnosed with adrenal insufficiency due to low adrenal steroids and adrenocorticotropic hormone excess due to lack of cortisol negative feedback signaling to the pituary gland. Genetic work up revealed two missense variants, p.Thr204Arg and p.Leu260Arg in the STAR gene, inherited by both parents (non-consanguineous). The StAR protein supports CYP11A1 enzyme to cleave the side chain of cholesterol and synthesize pregnenolone which is metabolized to all steroid hormones. We used bioinformatics to predict the impact of the variants on StAR activity and then we performed functional tests to characterize the two novel variants. In a cell system we tested the ability of variants to support cholesterol conversion to pregnenolone and measured their mRNA and protein expression. For both variants, we observed loss of StAR function, reduced protein expression and categorized them as pathogenic variants according to guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. These results fit the phenotype of the girl during diagnosis. This study characterizes two novel variants and expands the list of missense variants that cause CAH
    • 

    corecore