7 research outputs found

    The solar noise barrier project 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype

    No full text
    Noise barriers have been used worldwide to reduce the impact of sound generated from traffic on nearby areas. A common feature to appear on these noise barriers are all manner of graffiti and street art. In this work we describe the relative performance of a large area luminescent solar concentrator (LSC) noise barrier before and after application of street art to one surface. Comparisons are made of performance of East/West facing panels during a sunny day. It is shown that the edge mounted solar cells that are further\u3cbr/\u3eaway from the artwork perform at about 80% of their original performance level, while cells mounted nearby show greater performance decreases, suggesting that the effect of street art is primarily a localized effect. Furthermore, we demonstrate that illumination by sunlight from the rear side of the panel, opposite to the artwork shows less of a performance drop. In summary, the overall performance of a large-scale prototype LSC device is affected by the application of street art due to blocking solar access to the surface, but the effect is mostly confined to areas in the immediate vicinity of the surface modification, and the remaining panel area continues to function at a reasonable level

    The solar noise barrier project 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels

    Get PDF
    We report on the relative performances of two large-scale luminescent solar concentrator (LSC) noise barriers placed in an outdoor environment monitored for over a year. Comparisons are made for the performances of a number of attached photovoltaic cells with changing spectral illumination, cloud cover conditions and other seasonal variations, and the temperatures of the cells. Differences in performance are attributed to the positioning of the panels, whether facing North/South or East/West. In general, the panels facing East/West run cooler than those facing North/South. The LSCs in both orientations appear to perform more efficiently under lower light conditions: one factor contributing to this increased performance is better spectral matching of the solar spectrum under cloudy conditions to the absorption spectrum of the embedded fluorescent dye. This work is a step forward in the characterization of a large scale LSC device, and suggests predictions of performance of devices could be made for any location given sufficient knowledge of the illumination conditions, and provides an important step towards the commercialization of these alternative solar energy generators for the urban setting

    The solar noise barrier project 4:modeling of full-scale luminescent solar concentrator noise barrier panels

    Get PDF
    \u3cp\u3eA full-size (1 × 5 m\u3csup\u3e2\u3c/sup\u3e) luminescent solar concentrator (LSC) has been constructed and the edge electric outputs from the attached photovoltaic cells monitored for a period of slightly over one year in the solar noise barrier (SONOB) “living lab” outdoor environment. The results of the edge electric output measurements were compared to ray-tracing simulations, revealing imperfections in the system design and production that resulted in the significantly reduced performance of the panel compared to expectations. Results of these calculations suggest edge emission improvements of a factor of 6–9 are possible: at these improved edge outputs, the LSC becomes a viable solar energy generator for the built environment, with significant visual appeal. A grey-box computer model has been developed to predict LSC performance using a realistic device design with reduced internal light scattering and better photovoltaic cell positioning. A second model is used for extrapolation of the LSC solar barrier electric performance with different orientations in different world locations.\u3c/p\u3

    The solar noise barrier project 4: modeling of full-scale luminescent solar concentrator noise barrier panels

    No full text
    A full-size (1 × 5 m2) luminescent solar concentrator (LSC) has been constructed and the edge electric outputs from the attached photovoltaic cells monitored for a period of slightly over one year in the solar noise barrier (SONOB) “living lab” outdoor environment. The results of the edge electric output measurements were compared to ray-tracing simulations, revealing imperfections in the system design and production that resulted in the significantly reduced performance of the panel compared to expectations. Results of these calculations suggest edge emission improvements of a factor of 6–9 are possible: at these improved edge outputs, the LSC becomes a viable solar energy generator for the built environment, with significant visual appeal. A grey-box computer model has been developed to predict LSC performance using a realistic device design with reduced internal light scattering and better photovoltaic cell positioning. A second model is used for extrapolation of the LSC solar barrier electric performance with different orientations in different world locations

    Outdoor characterization of colored and textured prototype PV facade elements

    Get PDF
    The aim of this study is to assess the performance of prototype PV façade elements of various PV technologies, colors and textures. Within this context, a prototype PV façade demonstrator was constructed and monitored at SolarBEAT, Eindhoven. This prototype demonstrator consists of 9 façade PV panels of c-Si and CIGS technologies with flat and textured solar glasses and black, grey and red colors. The field-testing results indicate a limited performance drop of less than 20% for all colors and textures
    corecore