19 research outputs found

    Retuning of Inferior Colliculus Neurons Following Spiral Ganglion Lesions: A Single-Neuron Model of Converging Inputs

    Get PDF
    Lesions of spiral ganglion cells, representing a restricted sector of the auditory nerve array, produce immediate changes in the frequency tuning of inferior colliculus (IC) neurons. There is a loss of excitation at the lesion frequencies, yet responses to adjacent frequencies remain intact and new regions of activity appear. This leads to immediate changes in tuning and in tonotopic progression. Similar effects are seen after different methods of peripheral damage and in auditory neurons in other nuclei. The mechanisms that underlie these postlesion changes are unknown, but the acute effects seen in IC strongly suggest the “unmasking” of latent inputs by the removal of inhibition. In this study, we explore computational models of single neurons with a convergence of excitatory and inhibitory inputs from a range of characteristic frequencies (CFs), which can simulate the narrow prelesion tuning of IC neurons, and account for the changes in CF tuning after a lesion. The models can reproduce the data if inputs are aligned relative to one another in a precise order along the dendrites of model IC neurons. Frequency tuning in these neurons approximates that seen physiologically. Removal of inputs representing a narrow range of frequencies leads to unmasking of previously subthreshold excitatory inputs, which causes changes in CF. Conversely, if all of the inputs converge at the same point on the cell body, receptive fields are broad and unmasking rarely results in CF changes. However, if the inhibition is tonic with no stimulus-driven component, then unmasking can still produce changes in CF

    Harnessing landrace diversity empowers wheat breeding

    Get PDF
    Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.</p

    Activity-dependent maintenance and growth of dendrites in adult cortex

    No full text
    Whereas it is widely accepted that the adult cortex is capable of a remarkable degree of functional plasticity, demonstrations of accompanying structural changes have been limited. We examined the basal dendritic field morphology of dye-filled neurons in layers III and IV of the mature barrel cortex after vibrissal-deafferentation in adult rats. Eight weeks later, the tendency for these neurons to orient their dendritic arbors toward the center of their home barrel was found to be disrupted by the resultant reduced activity of thalamocortical innervation. Measures of spine density and total dendritic length were normal, indicating that the loss of dendritic bias was accompanied by growth of dendrites directed away from the barrel center. This finding suggests that in the mature cortex, the apparently static structural attributes of the normal adult cortex depend on maintenance of patterns of afferent activity; with the corollary that changes in these patterns can induce structural plasticity

    Cognitive and psychological dysfunction is present after a first seizure, prior to epilepsy diagnosis and treatment at a First Seizure Clinic

    No full text
    Abstract Objective Neuropsychological comorbidities found in chronic epilepsy have also been reported earlier in the disease course. However, recurrent seizures, antiseizure medication (ASM), and adjustment to a chronic diagnosis remain potential confounds of this literature. It thus remains unclear whether these comorbidities are primary or secondary attributes of epilepsy. To capture individuals as close to disease onset as possible, we studied the cognitive and psychological functioning in adults after their first seizure, yet prior to epilepsy diagnosis and treatment. Methods Using a telehealth‐based prospective design, we screened cognition, mood, and anxiety symptoms in adult patients referred to a First Seizure Clinic (FSC), who were over 18 years, English‐speaking and not taking ASM. We screened cognition via telephone, and psychological symptoms via online questionnaires, all prior to the patients' diagnostic evaluation. Data were collected on 32 individuals subsequently diagnosed with epilepsy at the FSC, and 30 healthy controls from the community, who were matched to the epilepsy group for age, gender, and education. Results A multivariate analysis of variance revealed that the groups differed significantly on combined cognitive measures with a large effect size (F[1,56] = 5.75, p < 0.001, η2 = 0.45). Post‐hoc analyses showed that performances on measures of verbal memory, working memory, and executive functions were significantly worse for the newly diagnosed epilepsy group than controls. The epilepsy group also exhibited higher rates of clinically significant depressive and anxiety symptoms. Significance Cognitive and psychological dysfunction is prevalent in people with epilepsy as early as the first seizure event, before the influence of diagnosis, ASM and recurrent seizures. Their neuropsychological profile parallels that seen in chronic epilepsy, showing that this dysfunction is already present at the very onset of the disease. The current study demonstrates the viability of telehealth neuropsychological screening for all new epilepsy cases. Plain Language Statement The results of this study show, using telephone‐based cognitive assessment and online questionnaires, that people with newly diagnosed epilepsy can experience problems with their thinking and memory skills, and low mood and anxiety, as early as after their first seizure. These issues are apparent at the very beginning of the disease, before an epilepsy diagnosis is made and before antiseizure medication is commenced, which suggests that they are due to the underlying brain disturbance, rather than the secondary effects of seizures, treatment, or lifestyle changes. Telehealth‐screening of thinking skills and mental health for all new epilepsy cases is recommended to promote early management of such problems

    Nonlinear Signal Summation in Magnocellular Neurons of the Macaque Lateral Geniculate Nucleus

    No full text
    Magnocellular (M-), but not parvocellular (P-), neurons of the macaque lateral geniculate nucleus (LGN) differ distinctively in their responses to counterphase-modulated and drifting gratings. Relative to stimulation with drifting gratings, counterphase modulation reduces the responses of M- cells in a band around 25 Hz, producing a “notch” in the temporal modulation transfer function (tMTF). The notch is prominent in nearly every M- cell with little variation in the temporal frequency at which it is deepest. The machinery responsible for the notch lies mostly outside the classical linear center. Directly driving the notching mechanism with annular gratings evokes no linear response but elicits a second harmonic (F2) modulation of the discharge accompanied by a drop in the mean discharge (F0). Analysis of the S- potential, which reveals inputs from ganglion cells, shows that 1) tMTFs of the afferent retinal ganglion cells are not notched and 2) during stimulation with annular gratings, the second harmonic component is present, but the drop in the F0 is largely absent from the responses of parasol ganglion cells. These results suggest that the notch is caused by the combined action of the linear response and the second harmonic response, both inherited from retina, and a suppression that originates after the retina. Our results reveal a distinctive signal transformation in the LGN and they show that nearly every M- cell exhibits a spatial nonlinearity like that observed in Y cells of the cat

    Clinical benefit of presurgical EEG-fMRI in difficult-to-localize focal epilepsy : A single-institution retrospective review.

    Get PDF
    Objective The aim of this report is to present our clinical experience of electroencephalography–functional magnetic resonance imaging (EEG-fMRI) in localizing the epileptogenic focus, and to evaluate the clinical impact and challenges associated with the use of EEG-fMRI in pharmacoresistant focal epilepsy. Methods We identified EEG-fMRI studies (n = 118) in people with focal epilepsy performed at our center from 2003 to 2018. Participants were referred from our Comprehensive Epilepsy Program in an exploratory research effort to address often difficult clinical questions, due to complex and difficult-to-localize epilepsy. We assessed the success of each study, the clinical utility of the result, and when surgery was performed, the postoperative outcome. Results Overall, 50% of EEG-fMRI studies were successful, meaning that data were of good quality and interictal epileptiform discharges were recorded. With an altered recruitment strategy since 2012 with increased inclusion of patients who were inpatients for video-EEG monitoring, we found that this patients in this selected group were more likely to have epileptic discharges detected during EEG-fMRI (96% of inpatients vs 29% of outpatients, P<.0001). To date, 48% (57 of 118) of patients have undergone epilepsy surgery. In 10 cases (17% of the 59 successful studies) the EEG-fMRI result had a “critical impact” on the surgical decision. These patients were difficult to localize because of subtle abnormalities, apparently normal MRI, or extensive structural abnormalities. All 10 had a good seizure outcome at 1 year after surgery (mean follow-up 6.5 years). Significance EEG-fMRI results can assist identification of the epileptogenic focus in otherwise difficult-to-localize cases of pharmacoresistant focal epilepsy. Surgery determined largely by localization from the EEG-fMRI result can lead to good seizure outcomes. A limitation of this study is its retrospective design with nonconsecutive recruitment. Prospective clinical trials with well-defined inclusion criteria are needed to determine the overall benefit of EEG-fMRI for preoperative localization and postoperative outcome in focal epilepsy
    corecore