118 research outputs found

    The colours of the Sun

    Full text link
    We compile a sample of Sun-like stars with accurate effective temperatures, metallicities and colours (from the UV to the near-IR). A crucial improvement is that the effective temperature scale of the stars has recently been established as both accurate and precise through direct measurement of angular diameters obtained with stellar interferometers. We fit the colours as a function of effective temperature and metallicity, and derive colour estimates for the Sun in the Johnson/Cousins, Tycho, Stromgren, 2MASS and SDSS photometric systems. For (B-V)_Sun, we favour the ``red'' colour 0.64 versus the ``blue'' colour 0.62 of other recent papers, but both values are consistent within the errors; we ascribe the difference to the selection of Sun-like stars versus interpolation of wider colour-Teff-metallicity relations.Comment: 5 pages, 2 figures, accepted by MNRA

    Unitary k-designs from random number-conserving quantum circuits

    Full text link
    Local random circuits scramble efficiently and accordingly have a range of applications in quantum information and quantum dynamics. With a global U(1)U(1) charge however, the scrambling ability is reduced; for example, such random circuits do not generate the entire group of number-conserving unitaries. We establish two results using the statistical mechanics of kk-fold replicated circuits. First, we show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number conserving unitaries. Specifically, the circuits form a kck_c-design with kc=O(Ld)k_c = O(L^d) for a system in dd spatial dimensions with linear dimension LL. Second, for k<kck < k_c, the depth τ\tau to converge to a kk-design scales as τ≳kLd+2\tau \gtrsim k L^{d+2}. In contrast, without number conservation τ≳kLd\tau \gtrsim k L^{d}. The convergence of the circuit ensemble is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously breaks kk U(1)U(1) symmetries. The associated Goldstone modes are gapless and lead to the predicted scaling of τ\tau. Our variational bounds hold for arbitrary spatial and qudit dimensions; we conjecture they are tight.Comment: 18 pages, 2 figure

    A limit on variations in the fine-structure constant from spectra of nearby Sun-like stars

    Full text link
    The fine structure constant, α\alpha, sets the strength of the electromagnetic force. The Standard Model of particle physics provides no explanation for its value, which could potentially vary. The wavelengths of stellar absorption lines depend on α\alpha, but are subject to systematic effects owing to astrophysical processes in stellar atmospheres. We measured precise line wavelengths using 17 stars, selected to have almost identical atmospheric properties to those of the Sun (solar twins), which reduces those systematic effects. We found that α\alpha varies by ≲\lesssim50 parts-per-billion (ppb) within 50 parsecs from Earth. Combining the results from all 17 stars provides an empirical, local reference for stellar measurements of α\alpha with an ensemble precision of 12 ppb.Comment: 33 pages, 6 figures. Published in Science (11 November 2022). This is the accepted version which includes 20 pages of Supplementary Material

    A comprehensive comparison of the Sun to other stars: searching for self-selection effects

    Full text link
    If the origin of life and the evolution of observers on a planet is favoured by atypical properties of a planet's host star, we would expect our Sun to be atypical with respect to such properties. The Sun has been described by previous studies as both typical and atypical. In an effort to reduce this ambiguity and quantify how typical the Sun is, we identify eleven maximally-independent properties that have plausible correlations with habitability, and that have been observed by, or can be derived from, sufficiently large, currently available and representative stellar surveys. By comparing solar values for the eleven properties, to the resultant stellar distributions, we make the most comprehensive comparison of the Sun to other stars. The two most atypical properties of the Sun are its mass and orbit. The Sun is more massive than 95 -/+ 2% of nearby stars and its orbit around the Galaxy is less eccentric than 93 +/- 1% of FGK stars within 40 parsecs. Despite these apparently atypical properties, a chi^2 -analysis of the Sun's values for eleven properties, taken together, yields a solar chi^2 = 8.39 +/- 0.96. If a star is chosen at random, the probability that it will have a lower value (be more typical) than the Sun, with respect to the eleven properties analysed here, is only 29 +/- 11%. These values quantify, and are consistent with, the idea that the Sun is a typical star. If we have sampled all reasonable properties associated with habitability, our result suggests that there are no special requirements for a star to host a planet with life.Comment: Published in the Astrophysical Journal, 684:691-706, 2008 September 1. This version corrects two small errors the press could not correct before publication - the errors are addressed in an erratum ApJ will release on Dec 1, 200

    Kinematics of the Galactic Halo from Horizontal Branch stars in the Hamburg/ESO Survey

    Full text link
    Large samples of Field Horizontal Branch (FHB) stars make excellent tracers of the Galactic halo; by studying their kinematics, one can infer important physical properties of our Galaxy. Here we present the results of a medium-resolution spectroscopic survey of 530 FHB stars selected from the Hamburg/ESO survey. The stars have a mean distance of ~7 kpc and thus probe the inner parts of the Milky Way halo. We measure radial velocities from the spectra in order to test the model of Sommer-Larsen et al., who suggested that the velocity ellipsoid of the halo changes from radially-dominated orbits to tangentially-dominated orbits as one proceeds from the inner to the outer halo. We find that the present data are unable to discriminate between this model and a more simple isothermal ellipsoid; we suggest that additional observations towards the Galactic centre might help to differentiate them.Comment: 7 pages, 7 figures. Accepted for publication in MNRA

    The Lantern Vol. 69, No. 1, Fall 2001

    Get PDF
    • Frets • Burn • The Amish-Man • City Children • Coasting West • Futile • Oxymoron • Fleeting Reflection • Pink Geraniums • Moving • Running: Arcola • Expectations • One Time Deal • We Slept • Faraway Field • My Own Giselle • My Father\u27s Will • Meet Me in Montana • Pride is a Lawn Mower • Gloss • 2% Low Fat • Bits of Tuesday • This is not a Pipe • What Ifs • Reconnection • A Bell Called Emily • The Elevatorhttps://digitalcommons.ursinus.edu/lantern/1159/thumbnail.jp

    A13K-0336: Airborne Multi-Wavelength High Spectral Resolution Lidar for Process Studies and Assessment of Future Satellite Remote Sensing Concepts

    Get PDF
    NASA Langley recently developed the world's first airborne multi-wavelength high spectral resolution lidar (HSRL). This lidar employs the HSRL technique at 355 and 532 nm to make independent, unambiguous retrievals of aerosol extinction and backscatter. It also employs the standard backscatter technique at 1064 nm and is polarization-sensitive at all three wavelengths. This instrument, dubbed HSRL-2 (the secondgeneration HSRL developed by NASA Langley), is a prototype for the lidar on NASA's planned Aerosols- Clouds-Ecosystems (ACE) mission. HSRL-2 completed its first science mission in July 2012, the Two-Column Aerosol Project (TCAP) conducted by the Department of Energy (DOE) in Hyannis, MA. TCAP presents an excellent opportunity to assess some of the remote sensing concepts planned for ACE: HSRL-2 was deployed on the Langley King Air aircraft with another ACE-relevant instrument, the NASA GISS Research Scanning Polarimeter (RSP), and flights were closely coordinated with the DOE's Gulfstream-1 aircraft, which deployed a variety of in situ aerosol and trace gas instruments and the new Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). The DOE also deployed their Atmospheric Radiation Measurement Mobile Facility and their Mobile Aerosol Observing System at a ground site located on the northeastern coast of Cape Cod for this mission. In this presentation we focus on the capabilities, data products, and applications of the new HSRL-2 instrument. Data products include aerosol extinction, backscatter, depolarization, and optical depth; aerosol type identification; mixed layer depth; and rangeresolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). Applications include radiative closure studies, studies of aerosol direct and indirect effects, investigations of aerosol-cloud interactions, assessment of chemical transport models, air quality studies, present (e.g., CALIPSO) and future (e.g., EarthCARE) satellite calibration/validation, and development/assessment of advanced retrieval techniques for future satellite applications (e.g., lidar+polarimeter retrievals of aerosol and cloud properties). We will also discuss the relevance of HSRL-2 measurement capabilities to the ACE remote sensing concept

    Evaluating the effectiveness and reliability of the Vibrant Soundbridge and Bonebridge auditory implants in clinical practice: Study design and methods for a multi-centre longitudinal observational study.

    Get PDF
    BACKGROUND: The Vibrant Soundbridge middle ear implant and the Bonebridge bone conducting hearing device are hearing implants that use radio frequency transmission to send information from the sound processor to the internal transducer. This reduces the risk of skin problems and infection but requires a more involved surgical procedure than competitor skin penetrating devices. It is not known whether more complex surgery will lead to additional complications. There is little information available on the reliability of these systems and adverse medical or surgical events. The primary research question is to determine the reliability and complication rate for the Vibrant Soundbridge and Bonebridge. The secondary research question explores changes in quality of life following implantation of the devices. The tertiary research question looks at effectiveness via changes in auditory performance. METHOD: The study was designed based on a combination of a literature search, two clinician focus groups and expert review.A multi-centre longitudinal observational study was designed. There are three study groups, two will have been implanted prior to the start of the study and one group, the prospective group, will be implanted after initiation of the study. Outcomes are surgical questionnaires, measures of quality of life, user satisfaction and speech perception tests in quiet and in noise. CONCLUSION: This is the first multi-centre study to look at these interventions and includes follow up over time to understand effectiveness, reliability, quality of life and complications

    Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status

    Full text link
    Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research
    • …
    corecore