1,275 research outputs found

    Digital control of dual-load LCLC resonant converters

    Get PDF
    The paper proposes the analysis, design and realisation of dual-output resonant LCLC converters with independent output regulation, employing a single power stage and combined PWM and frequency control. Asymmetric switching of the power devices is used to facilitate independent control of the outputs to provide +5 V and +3.3 V from a 15 V-20 V input supply over a range of load condition

    A back to back multilevel converter for driving low inductance brushless AC machines

    Get PDF
    Traditionally, multilevel converters are utilised in medium voltage applications, allowing the DC-link voltage to exceed the switch maximum blocking voltage. Here, their application to control high- efficiency brushless permanent magnet synchronous machines exhibiting low phase inductance is explored, the relative advantages being shown to include reduced current ripple and improved harmonic spectrum. A cost benefit analysis is included along with experimental results from a prototype 5-level back-to-back converter

    Rapid analysis & design methodologies of High-Frequency LCLC Resonant Inverter as Electrodeless Fluorescent Lamp Ballast

    Get PDF
    The papers presents methodologies for the analysis of 4th-order LCLC resonant power converters operating at 2.63 MHz as fluorescent lamp ballasts, where high frequency operation facilitates capacitive discharge into the tube, with near resonance operation at high load quality factor enabling high efficiency. State-variable dynamic descriptions of the converter are employed to rapidly determine the steady-state cyclic behaviour of the ballast during nominal operation. Simulation and experimental measurements from a prototype ballast circuit driving a 60 cm, 8W T5 fluorescent lamp are also included

    Modelling and regulation of dual-output LCLC resonant converters

    Get PDF
    The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are employed and new analysis techniques are developed to establish operating mode boundaries with which to describe the internal behaviour of a dual-output resonant converter topology. The designer is guided through the most important criteria for realising a satisfactory converter, and the impact of parameter choices on performance is explored. Predictions from the resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control

    A cascaded H-bridge BLDC drive incorporating battery management

    Get PDF
    A multilevel BLDC drive is proposed using cascaded H-bridges with isolated sources to provide superior output waveforms and reduced current ripple whilst incorporating observer based SoC estimation. Energy management, based on SoC, is incorporated to improve battery performance, reduce variation between cells and to control charge/discharge profiles

    Rapid steady-state analysis of CLL resonant power converters

    Get PDF
    Cyclic averaging techniques are applied to the CLL resonant power converter to provide steady-state converter characteristics for rapid stress analysis. This is shown to facilitate the determination of mode duties and initial conditions through knowledge of the operational modes of the rectifier at various operating frequencies. Comparisons are made with FMA-based cyclic analyses, and Spice simulations, that show, respectively, improved accuracy and vastly improved execution speeds

    Analysis and control of dual-output LCLC resonant converters, and the impact of leakage inductance

    Get PDF
    The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are developed to establish operating mode boundaries with which to describe the internal behaviour of dual-output resonant converters, and the impact of output leakage inductance. The resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control to verify the analysis, modeling and control predictions

    Comparison of single-phase matrix converter and H-bridge converter for radio frequency induction heating

    Get PDF
    This paper compares the newly developed single-phase matrix converter and the more conventional H- bridge converter for radio frequency induction heating. Both the converters exhibit unity power factor, very low total harmonic distortion at the utility supply interface, good controllability under soft switching condition for a wide range of power, and high efficiencies, whilst still having simple structures. A novel switching control pattern has been proposed for the matrix converter in order to maintain the comparable performance to the H-bridge converter. Simulation and experimental results for both converters are presented. Comparisons between two converters have confirmed the excellent performance of the proposed matrix converter

    A three-phase to single-phase matrix converter for high-frequency induction heating

    Get PDF
    The paper describes a new three-phase to single-phase matrix converter featuring unity input power factor, very low input total harmonic distortion, and soft-switching over the full power range, for high frequency induction heating applications. A variable output pulse density modulation scheme has been proposed for stable operation of the converter, with the notable feature of requiring no on-line calculations for the synthesis of three-phase input current system. Practical issues in realising the converter, viz. line frequency synchronisation and output current circulation, are described. Good agreement between simulation and experimental results confirm the benefits of the proposed converter

    Observer based feedback control of 3rd order LCC resonant converters

    Get PDF
    The paper considers specific issues related to the design and realisation of observer-based feedback of isolated output voltage for resonant power converters. To provide a focus to the study, a 3rd order LCC converter is employed as a candidate topology. It is shown that whilst resonant converters nominally operate at high switching frequencies to facilitate the use of small reactive components, by appropriate pre-conditioning of non-isolated resonant-tank voltages and currents, the resulting observer can be implemented at relatively low sampling frequencies, and hence, take advantage of low-cost digital hardware. Experimental results are used to demonstrate the accuracy of observer estimates under both transient and steady-state operating conditions, and to show operation of the observer as part of a closed-loop feedback system where the LCC resonant converter is used as a regulated power supply
    • …
    corecore