
RAPID STEADY-STATE ANALYSIS OF CLL RESONANT 
POWER CONVERTERS  

†C. Gould, C. M. Bingham, D. A. Stone, M. P. Foster  
Department of Electronic and Electrical Engineering 

University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK 
Tel. +44 (0) 114 2225847, Fax. +44 (0) 114 2225196 

†Corresponding author: e-mail: elp02crg@sheffield.ac.uk 
 

ABSTRACT 
Cyclic averaging techniques are applied to the CLL 
resonant power converter to provide steady-state 
converter characteristics for rapid stress analysis. This is 
shown to facilitate the determination of mode duties and 
initial conditions through knowledge of the operational 
modes of the rectifier at various operating frequencies. 
Comparisons are made with FMA-based cyclic analyses, 
and Spice simulations, that show, respectively, improved 
accuracy and vastly improved execution speeds. 
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1.  Introduction 
Resonant power converters are attracting a resurgence of 
interest for the development of efficient DC-DC power 
supplies. This is primarily due to the inherent ‘soft-
switching’ action that facilitates the use of higher 
excitation frequencies, resulting in a desirable downsizing 
of reactive components.  Of the many 3-element resonant 
topologies [1-3], the split-inductor arrangement of the 
CLL converter (shown in Fig. 1) is of particular interest, 
since it can utilise parasitic elements inherent in isolation 
transformers (necessary for safety in commercial 
products), thereby allowing high-order topologies to be 
realised for applications such as airborne radar, flat screen 
televisions and distributed power supplies. These high-
order resonant systems are, however, highly non-linear, 
which complicates their analysis and design.  
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Fig. 1. Voltage-output CLL resonant converter topology  
 
An important property of the CLL resonant converter is 
that it can benefit from an almost load independent design 
point (positioned at the tank series-resonant frequency) 
that is above the system resonant frequency [2], thereby 
allowing classical inductive (Zero-Voltage) switching 
characteristics over the full load range. This combined 

with low turn-off current in the MOSFETs (thereby 
facilitating low-loss switching) make the CLL converter 
an attractive choice for efficient, compact power supplies. 
 
2. Analysis of Resonant Converters 
Traditionally, resonant converters are analysed through 
the use of Fundamental Mode Approximation (FMA) [1, 
6-8] or variants thereof [9-11], as well as other frequency-
domain techniques, all of which can predict the behaviour 
of the converter to a degree of accuracy dictated by 
assumptions made during modelling. State-variable 
techniques can also be utilised to provide very accurate 
transient time-domain solutions [12-14], through the use 
of integration-based simulation packages. However, the 
reliance on integration imparts significant computational 
overhead, and is therefore time consuming. Because of 
this, many authors have sought closed-form (steady-state) 
solutions of the piecewise linear state-variable equations. 
Such techniques, however, require a priori knowledge of 
the converters behaviour at each frequency - in particular, 
the type and number of modes of operation that exist in a 
cycle, and their duty.  Whilst the latter can usually be 
approximated through FMA (or similar techniques), these 
often prove inaccurate and render undesirable analysis 
results (as will be demonstrated). Other authors [15-16] 
have overcome the need for a priori knowledge through 
the utilisation of Chebyshev polynomial approximations 
and initial guesses for the mode duties (i.e. Newton’s 
algorithm for convergence), thereby achieving useful 
transient analyses of switched circuits; though incurring 
iterative loops in the algorithm.   
In [17], an accurate ‘initial guess’ and robust algorithm is 
proposed that utilises interval analysis and the 
compensation theorem.  Again, fast and accurate transient 
analyses for regulated DC-DC converters, is shown, 
though with the drawback of requiring iterative search 
methods and additional memory requirements (to store 
correctly identified mode descriptions). 
If only steady state waveforms are required, i.e. for use in 
a Graphical User Interface (GUI) for accurate, rapid stress 
analysis of converter designs, cyclic-averaging techniques 
[18] can be applied to resonant converters [11, 19] that 
provide analytical time-domain solutions for the 
converter’s internal voltages and currents. Given a priori 
knowledge of the mode-order and, most importantly, the 
length of each duty, these techniques are demonstrated to 
be of comparable accuracy to Spice whilst requiring only 
a small fraction (typically 1/10,000th) of the execution 
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time. In [11, 19], the mode duties are calculated using 
FMA or modified FMA techniques, and the 
corresponding accuracy of the output voltage in the 
frequency domain, is demonstrated. Here, the FMA 
estimations are verified in the time domain, and whilst 
output voltages are seen to be commensurate with results 
from Spice and practical converters, the accuracies of the 
current and voltage waveforms suffer. 
Instead, therefore, it will be demonstrated that for 
particular converter topologies, the cyclic process itself 
can be utilised, in conjunction with basic network theory, 
to provide rapid and accurate analysis of the converters. 
 
3.1. Cyclic Modelling Methodology 
In steady-state, a converter is ‘cyclic’ when the state 
vector at the beginning of the switching period, x(t), is 
equal to the state vector at the end of the switching period, 
x(t + T). Or more generally: 
 

)()( NTtxtx +=      (1) 
 
where T is the period of the input voltage and N is an 
integer number of cycles. During each cycle the converter 
can be divided into distinct operating modes, dictated by 
the state of the switches (i.e. polarity of input voltage) and 
circuit currents and voltages. Each of these modes can be 
described using a piecewise linear equations. In general, 
for the ith operating mode: 
 

ii BtxAtx += )()(&      (2) 
 
where Ai is the dynamical system matrix of the ith mode (n 
× n), and Bi the mode’s excitation matrix (n × 1), and i ∈ 
1…m.  Assuming that each cycle begins at time t0, and 
ends at time tm, where tm-t0 = T, the length of the ith mode 
is given by ∆ti = ti-ti-1 = diT, where di is a parameter known 
as the duty of the ith mode. The sum of the m duties must 
equal unity for a complete cycle.  From [18], the system 
can be solved to find the evolution of the state vector: 
 

( ) ( ) ( )

( ) iii

t

t
i

tA
i

TdA
i

tx

dBetxetx
i

i

iiii

Γ+Φ=

+=

−

−
− ∫

−

1

1

1

ττ     (3) 

 
where: , and  are the 

initial conditions for the i

( ) ( ) ττ dBeett
i

i

iiii

t

t
i

tA
i

TdA
iii ∫

−

−
− =Γ=Φ=Φ

1

,, 1
( )itx

th mode.  To simplify the 
analysis, an augmented state vector can be introduced by 
virtue of the piece-wise linear nature of the system: 
 

( ) ( )

( ) ( )iii

iiii

txAtx
dt
d

txBAtx
dt
d

ˆˆˆor  

1001

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
    (4) 

 

A solution of (4) is found by noting that the initial 
conditions for the (i+1)th mode are the results from the 
previous ith mode: 
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3.2. Modelling of the voltage-output CLL converter 
The converter is analysed by partitioning the dynamics 
into fast and slow sub-systems, related by coupling 
equations. For this converter topology, the fast sub-system 
includes the action of the power switches and resonant 
circuit, whilst the slow system consists of the output filter. 
A coupling equation relates the highly non-linear 
behaviour of the rectifier to the fast and slow dynamics.  
Fig. 2 shows the converter in terms of its idealised 
reactive components and associated parasitic resistances, 
and an equivalent model of the bridge rectifier during 
Continuous Conduction Mode (CCM), comprising of 
diode on-state voltages, Vd, and resistances rf. The 
MOSFET drain-source resistance during conduction is 
modelled by rds. To avoid undue complication, the 
transformer shown in Fig. 1 is assumed to have a 1:1 turns 
ratio, and is therefore modelled, as in Fig. 2, solely by its 
magnetising inductance, Lp, and winding resistance, rLp. 
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Fig. 2. State-variables of CLL converter (voltage-output) 
 
Utilising basic network theory the converter can be 
described by: 
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In this case, the only variables in the system are the 
polarities of the input voltage and rectifier current. Since 
these can each be in one of two states (for operation in 
continuous conduction mode), this totals four modes of 
operation (see Fig. 3).  
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                        (a)                 (b) 
Fig. 3. Cyclic modes of CLL converter (a) above series resonance 
(160kHz), and (b) below series resonance (130kHz) 
 
Normal operation will be considered to occur at, or above, 
the series resonant frequency. Hence, given that a positive 
input voltage transition marks the start of a cycle, 
convention for mode description becomes: 
 
Mode 1: Vin = VDC, and IR < 0 hence sgn(IR) = -1 
Mode 2: Vin = VDC, and IR > 0 hence sgn(IR) = 1 
Mode 3: Vin = 0, and IR > 0 hence sgn(IR) = 1 
Mode 4: Vin = 0, and IR < 0 hence sgn(IR) = -1 
 
3.3. Determination of duties 
Accurate knowledge of mode duties is crucial for correct 
determination of the converter’s initial conditions and 
behaviour. FMA techniques established in [8] are initially 
used to provide estimates of the mode lengths, and their 
performance at predicting waveforms, is assessed. 
 
3.3.1. FMA estimation of first mode 
From [8] the phase-angle between the input voltage and 
rectifier current can be found from: 
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where: A = Ls/Lp, ωo = fundamental frequency,  
ωs = switching frequency, and QL  = loaded quality factor 
at ωo.  The duty for the first mode is found by normalising 
with respect to 2π, and the subsequent duties found by 
symmetry. However, for operation below the series 
resonance, the angle obtained can be negative (since the 
rectifier can switch capacitively, hence, the rectifier 

current leads the input voltage, as shown in Fig. 3(b)). In 
this case the modes operate in an alternative sequence (if 
the positive input voltage transition still marks the 
beginning of a cycle). The first duty is then found through 
subtracting the magnitude of the normalized angle from 
0.5. Subsequent modes can again be found through 
symmetry. 
Since Zero Voltage Switching (ZVS) is required for 
efficient operation, predictions must be limited to 
frequencies above the system resonance (ωr). Therefore, 
the duties may be described more generally by: 
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An example converter (rds =0.19Ω, Cs =23nF, rCs =46mΩ, 
Ls =54.3µH, rLs =0.7Ω, Lp =29.9µH, rLp =0.7Ω, Vd =0.8V,  
rf =1Ω, Cf =100µF, rCf =0.44Ω, RL =20Ω, resonant 
frequency fr =128kHz) is used to provide a demonstration 
of model accuracy. From practical measurements using 
sub-series resonant switching (130kHz), and supra-series 
resonant switching (160kHz), the converter can be seen to 
possess waveforms shown below in Fig. 4. By inspection, 
a duty of 0.04 (or 4% of the time-period of operation) can 
be seen to develop an average output voltage of 8.77V for 
160kHz operation, whilst 130kHz operation yields 17.8V 
with a duty of 0.372 (37.2%). 
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          (a)                 (b) 

Fig. 4. Practical waveforms of converter operated at (a) 160kHz and (b) 
130kHz 

 
FMA estimates of the duties produce 3.5% difference 
compared to practical results for 160kHz operation, and 
1.5% difference at 130kHz. Subsequent application of the 
cyclic analysis at these frequencies yields 20.6% error in 
the average output voltage for 160kHz operation and a 
16.7% error for 130kHz. Conversely, Spice simulation of 
the converter at 160kHz produces 5.8% output voltage 
error for a 1.4% duty error, and 16.7% output voltage 
error for 8.7% duty error at 130kHz operation. The 
waveforms generated by both modelling methods are 
shown in Fig. 5. 
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                  (c)               (d) 
Fig. 5. Circuit currents referred to input voltage from (a) FMA cyclic 
predictions at 160kHz, (b) Spice predictions for operation at 160kHz, (c) 
FMA cyclic predictions at 130kHz and (d) Spice predictions for 
operation at 130kHz 
 
It is evident from Fig. 5 that large errors between the 
duties can have a significant effect on the accuracy of the 
initial conditions and resulting waveforms, and hence, the 
accuracy of the output voltage predictions. Yet it is shown 
that with greater accuracy in the calculation of the first 
duty, the prediction of output voltage approaches that of 
the presented converter. 
 From an execution speed perspective, the FMA-based 
cyclic predictions take ~0.14 seconds (with step sizes of 
10 nanoseconds) compared to ~730 seconds for the Spice 
transient analysis (10ms to steady state) with same step-
size.  
 
3.3.2. Numeric search from a FMA initial condition 
Improvement of the duty accuracy can be obtained by 
noting that the first mode must end as 

s
 becomes equal 
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iteratively sweeping the duty from the initial FMA 
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when the cyclic analysis correctly predicts the two 
boundary conditions.  By way of example, Fig. 5(a) 
shows the discrepancy produced when the duty is 
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  (a)        (b) 

Fig. 6. Circuit currents referred to input voltage from iterative cyclic 
predictions for (a ) operation at 160kHz, and (b) 130kHz. 
 

Conversely, Fig. 6 highlights the improvements due to the 
iteration at both operating frequencies, with a much 
higher correlation between the cyclic and Spice 
predictions being evident.  Specifically, at 160kHz a duty 
error of 0.8% produces an output voltage error of 0.8%.  
Notably, the execution time has increased to 1/250th (2.93 
seconds) of that for the generation of ‘equivalent’ Spice 
results. Likewise, for 130kHz operation the errors are 
0.6% (duty) and 1.3% (output voltage) with an execution 
time of 1/175th (2.04 seconds) compared to Spice. 
 
3.3.4. Cyclic estimation 
The two techniques shown above demonstrate the need 
for an equation-based, current-bounded technique for fast, 
accurate estimation of d1. Through modifications to the 
scheme presented for finding the initial conditions of a 
cyclic system (8), it can be shown that cyclic analysis can 
be employed to provide accurate estimations of the first 
duty. 
By describing the input voltage as a bipolar square wave, 
the fast and slow sub-systems become anti-symmetrical 
and the initial conditions can be obtained from just 2 
modes, requiring only that the identity matrix in (8) be 
replaced with the modified matrix: 
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(describing the polarity of the fast and slow sub-systems).  
 
Consider the new conventions for describing the modes in 
Fig. 7—each half-cycle now begins in M2 for supra-series 
resonant switching, and M1 for sub-series resonant 
operation. Since  at the start and finish of each half-
cycle for both forms of switching, the vector of initial 
conditions obtained will contain equal values for  and 

 since . Knowing that these values must be 

equal, the cyclic process can be performed with the time-
period of operation (T) and the duty d

0=RI

pLI

sLI
ps LLR III −=

3 (for supra-series 
resonant switching or d4 for sub-series resonant 
switching) set as an algebraic variable—the resulting 
vector of initial conditions thereby containing values of 

 and  in terms of T and d
pLI

sLI 3 (or d4), that can be 

equated, and solved for a given frequency of operation.  
Symmetry then allows the calculation of other modes.  
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Fig. 7. Modified cyclic modes for (a) supra-series resonance operation 
and (b) sub-series resonance operation  
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Using only 2 modes, the system can be described by: 
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  (for supra-series resonance switching) 
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(for sub-series resonance switching) 
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The exponentials are evaluated algebraically through use 
of binomial expansions and ‘p’ elements of the Taylor 
series: 
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(for i=1, j=4 and i=2, j=3) 
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(for i=3 and i=4) 

From (15) and (16), it is evident that for high values of p, 
high powers of d3 or d4 will be present in the algebraic 
solution of each exponential, thus complicating the total 
solution process, whilst small values of p will introduce 
errors into the solution for the mode duties. Since the 
error incurred when using p elements of the Taylor series 
is: 
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the greatest error naturally occurs when the product 
 is largest, which for any frequency occurs just 

before the series-resonant frequency (i.e. when the first 
mode duty approaches 0.5). 

)( Tdi ⋅

Using knowledge of the resonant frequency to obtain the 
largest ZVS value for T, Fig. 8 shows the correlation 
between the number of elements of the Taylor series, and 
the maximum error in the calculation of any term in the 
numerical matrix exponential. 
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Fig. 8. Effect of number of terms used in Taylor series on maximum 
error in numerical matrix exponential 
 
Evidently, for this particular converter, it is safe to assume 
that 12 elements of the Taylor series are adequate to 
produce less than 1% error in any of the matrix 
exponential terms, thereby resulting in a reliable value for 
the first mode duty. 

Using common mathematical software packages (eg. 
Maple or Symbolic Matlab), (13) and (14) can be solved 
using the exponential descriptions in (15) and (16). The 
resulting algebraic vector for the initial conditions will 
therefore contain the values for  and  when , 

which are then equated and ordered into a 96
sLI

pLI 0=RI
th order 

polynomial (since 12 elements are used in the Taylor 
series).  A software package is then used to find the 96 
roots of the polynomial and the single real root existing in 
the range 0 → 0.5 (i.e. a half-cycle of operation), 
representing d3 (or d4) can be obtained. A definitive 
theorem showing that only a single real-solution exists in 
the range 0 → 0.5 has not yet been forthcoming.  
However, a sample of 100 CLL converter designs with 
specifications randomly taken from the following ranges: 
Output power = 100W → 1kW, output current = 1A → 
10A, fundamental frequency = 50kHz → 150kHz, 
Switching frequency = 50kHz → 1.5MHz, parallel 
inductor = 10µH → 1mH, all parasitics = 5mΩ → 1Ω, 
have been simulated to steady-state using Spice, and the 
duty d1 subsequently obtained.  Estimates of d1 of the 100 
designs, using the proposed cyclic-estimation method, 
showed that all solutions resulted in a single real root in 
the range 0 → 0.5, and the % difference between the 
Spice results and the estimates, shown in Fig. 9, confirms 
that excellent accuracy is obtained. 
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Fig. 9. Percentage difference between cyclic and Spice models for 
estimation of 1st mode duty.  
 
Application of the cyclic estimation technique to the 
original converter described previously results in the 
waveforms shown in Fig. 10, for both 160kHz and 
130kHz operation.  
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   (a)         (b) 

Fig. 10. Circuit currents referred to input voltage from cyclic predictions 
with cyclic 1st mode estimation for (a) operation at 160kHz, and (b) 
130kHz. 
 
The cyclic estimation of the first duty produces a 0.6% 
error for 160kHz, and 0.4% error for 130kHz operation. 
From an output voltage perspective, the cyclic estimation 
produces errors of 1.8% and 2.2% for 160kHz and 
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130kHz operation, respectively, with execution times of 
approximately 1/3720th and 1/2830th of that required by 
Spice. The methodology is, therefore, demonstrated to 
operate with the same order of computation speed as that 
of FMA predicted cyclic analysis, yet with the equivalent 
accuracy of a numerical-search approach to calculating 
the duties.  For completeness, Fig. 11 shows the resulting 
output voltage from the proposed cyclic estimation 
techniques, in the frequency domain, when compared to 
measurement taken from the presented experimental 
converter. 
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Fig. 11. Practical frequency response of converter with cyclic analyses 
using FMA and cyclic initial conditions 
 
4.  Conclusion 
For analysis of the steady-state stresses on components in 
the converter, cyclic modelling techniques have been 
applied to provide fast and accurate steady-state time 
domain solutions.  A new method for estimating the mode 
duties for Continuous Conduction Mode operation, has 
been proposed. The method relies on the currents in the 
series and parallel branches of the inverter being equal at 
the beginning and end of each cycle in steady-state. The 
method is shown to provide duties for a wide range of 
converters with accuracies of better than 99% when 
compared with both practical waveforms and transient 
Spice results (employed as the speed metric throughout 
the paper). 
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