12 research outputs found

    Sum of squares generalizations for conic sets

    Full text link
    In polynomial optimization problems, nonnegativity constraints are typically handled using the sum of squares condition. This can be efficiently enforced using semidefinite programming formulations, or as more recently proposed by Papp and Yildiz [18], using the sum of squares cone directly in a nonsymmetric interior point algorithm. Beyond nonnegativity, more complicated polynomial constraints (in particular, generalizations of the positive semidefinite, second order and â„“1\ell_1-norm cones) can also be modeled through structured sum of squares programs. We take a different approach and propose using more specialized polynomial cones instead. This can result in lower dimensional formulations, more efficient oracles for interior point methods, or self-concordant barriers with smaller parameters. In most cases, these algorithmic advantages also translate to faster solving times in practice

    International researcher mobility and knowledge transfer in the social sciences and humanities

    Get PDF
    This article explores knowledge outcomes of international researcher mobility in the social sciences and humanities. Looking in particular at international experiences of longer durations in the careers of European PhD graduates, it proposes a threefold analytical typology for understanding the links between the modes, durations, and outcomes of this mobility in terms of the exchange of codified knowledge; the sharing of more tacit knowledge practices; and the development of a cosmopolitan identity. The findings suggest that, under the right conditions, there can be an important and transformative value to longer stays, which can lead to enduring outcomes in terms of knowledge production and innovation and the spatially distributed networks that sustain it

    Interface-induced phenomena in magnetism

    Full text link

    Outer approximation with conic certificates for mixed-integer convex problems

    No full text
    Abstract A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K∗{{\mathcal {K}}}^*K∗cuts derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all subproblems are well-posed, the algorithm detects infeasibility or unboundedness or returns an optimal solution in finite time. Using properties of the conic certificates, we show that the K∗{{\mathcal {K}}}^*K∗ cuts imply certain practically-relevant guarantees about the quality of the polyhedral relaxations, and demonstrate how to maintain helpful guarantees when the LP solver uses a positive feasibility tolerance. We discuss how to disaggregateK∗{{\mathcal {K}}}^*K∗ cuts in order to tighten the polyhedral relaxations and thereby improve the speed of convergence, and propose fast heuristic methods of obtaining useful K∗{{\mathcal {K}}}^*K∗ cuts. Our new open source MI-conic solver Pajarito (github.com/JuliaOpt/Pajarito.jl) uses an external mixed-integer linear solver to manage the search tree and an external continuous conic solver for subproblems. Benchmarking on a library of mixed-integer second-order cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the leading open source alternative) and is competitive with CPLEX’s specialized MISOCP algorithm. We demonstrate the robustness of Pajarito by solving diverse MI-conic problems involving mixtures of positive semidefinite, second-order, and exponential cones, and provide evidence for the practical value of our analyses and enhancements of K∗{{\mathcal {K}}}^*K∗ cuts

    Performance enhancements for a generic conic interior point algorithm

    No full text
    Abstract In recent work, we provide computational arguments for expanding the class of proper cones recognized by conic optimization solvers, to permit simpler, smaller, more natural conic formulations. We define an exotic cone as a proper cone for which we can implement a small set of tractable (i.e. fast, numerically stable, analytic) oracles for a logarithmically homogeneous self-concordant barrier for the cone or for its dual cone. Our extensible, open-source conic interior point solver, Hypatia, allows modeling and solving any conic problem over a Cartesian product of exotic cones. In this paper, we introduce Hypatia’s interior point algorithm, which generalizes that of Skajaa and Ye (Math. Program. 150(2):391–422, 2015) by handling exotic cones without tractable primal oracles. To improve iteration count and solve time in practice, we propose four enhancements to the interior point stepping procedure of Skajaa and Ye: (1) loosening the central path proximity conditions, (2) adjusting the directions using a third order directional derivative barrier oracle, (3) performing a backtracking search on a curve, and (4) combining the prediction and centering directions. We implement 23 useful exotic cones in Hypatia. We summarize the complexity of computing oracles for these cones and show that our new third order oracle is not a bottleneck. From 37 applied examples, we generate a diverse benchmark set of 379 problems. Our computational testing shows that each stepping enhancement improves Hypatia’s iteration count and solve time. Altogether, the enhancements reduce the geometric means of iteration count and solve time by over 80% and 70% respectively
    corecore