177 research outputs found

    A procedure for implanting a spinal chamber for longitudinal in vivo imaging of the mouse spinal cord.

    Get PDF
    Studies in the mammalian neocortex have enabled unprecedented resolution of cortical structure, activity, and response to neurodegenerative insults by repeated, time-lapse in vivo imaging in live rodents. These studies were made possible by straightforward surgical procedures, which enabled optical access for a prolonged period of time without repeat surgical procedures. In contrast, analogous studies of the spinal cord have been previously limited to only a few imaging sessions, each of which required an invasive surgery. As previously described, we have developed a spinal chamber that enables continuous optical access for upwards of 8 weeks, preserves mechanical stability of the spinal column, is easily stabilized externally during imaging, and requires only a single surgery. Here, the design of the spinal chamber with its associated surgical implements is reviewed and the surgical procedure is demonstrated in detail. Briefly, this video will demonstrate the preparation of the surgical area and mouse for surgery, exposure of the spinal vertebra and appropriate tissue debridement, the delivery of the implant and vertebral clamping, the completion of the chamber, the removal of the delivery system, sealing of the skin, and finally, post-operative care. The procedure for chronic in vivo imaging using nonlinear microscopy will also be demonstrated. Finally, outcomes, limitations, typical variability, and a guide for troubleshooting are discussed

    Diverse Inflammatory Response After Cerebral Microbleeds Includes Coordinated Microglial Migration and Proliferation.

    Get PDF
    BACKGROUND AND PURPOSE:Cerebral microbleeds are linked to cognitive decline, but it remains unclear how they impair neuronal function. Infarction is not typically observed near microbleeds, suggesting more subtle mechanisms, such as inflammation, may play a role. Because of their small size and largely asymptomatic nature, real-time detection and study of spontaneous cerebral microbleeds in humans and animal models are difficult. METHODS:We used in vivo 2-photon microscopy through a chronic cranial window in adult mice to follow the inflammatory response after a cortical microhemorrhage of ≈100 µm diameter, induced by rupturing a targeted cortical arteriole with a laser. RESULTS:The inflammatory response included the invasion of blood-borne leukocytes, the migration and proliferation of brain-resident microglia, and the activation of astrocytes. Nearly all inflammatory cells responding to the microhemorrhage were brain-resident microglia, but a small number of CX3CR1+ and CCR2+ macrophages, ultimately originating from the invasion of blood-borne monocytes, were also found near the lesion. We found a coordinated pattern of microglia migration and proliferation, where microglia within 200 µm of the microhemorrhage migrated toward the lesion over hours to days. In contrast, microglia proliferation was not observed until ≈40 hours after the lesion and occurred primarily in a shell-shaped region where the migration of microglia decreased their local density. These data suggest that local microglia density changes may trigger proliferation. Astrocytes activated in a similar region as microglia but delayed by a few days. By 2 weeks, this inflammatory response had largely resolved. CONCLUSIONS:Although microhemorrhages are small in size, the brain responds to a single bleed with an inflammatory response that involves brain-resident and blood-derived cells, persists for weeks, and may impact the adjacent brain microenvironment

    Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models

    Full text link
    The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture, which we call DeepVess, yielded a segmentation accuracy that was better than both the current state-of-the-art and a trained human annotator, while also being orders of magnitude faster. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm>75\mu m) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models.Comment: 34 pages, 9 figure

    Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: Noninvasive creation of localized heart defects

    Get PDF
    Yalçın, Hüseyin Çağatay (Dogus Author)Embryonic heart formation is driven by complex feedback between genetic and hemodynamic stimuli. Clinical congenital heart defects (CHD), however, often manifest as localized microtissue malformations with no underlying genetic mutation, suggesting that altered hemodynamics during embryonic development may play a role. An investigation of this relationship has been impaired by a lack of experimental tools that can create locally targeted cardiac perturbations. Here we have developed noninvasive optical techniques that can modulate avian cardiogenesis to dissect relationships between alterations in mechanical signaling and CHD. We used two-photon excited fluorescence microscopy to monitor cushion and ventricular dynamics and femtosecond pulsed laser photoablation to target micrometer-sized volumes inside the beating chick hearts. We selectively photoablated a small (∼100 μm radius) region of the superior atrioventricular (AV) cushion in Hamburger-Hamilton 24 chick embryos. We quantified via ultrasound that the disruption causes AV regurgitation, which resulted in a venous pooling of blood and severe arterial constriction. At 48 h postablation, quantitative X-ray microcomputed tomography imaging demonstrated stunted ventricular growth and pronounced left atrial dilation. A histological analysis demonstrated that the laser ablation produced defects localized to the superior AV cushion: a small quasispherical region of cushion tissue was completely obliterated, and the area adjacent to the myocardial wall was less cellularized. Both cushions and myocardium were significantly smaller than sham-operated controls. Our results highlight that two-photon excited fluorescence coupled with femtosecond pulsed laser photoablation should be considered a powerful tool for studying hemodynamic signaling in cardiac morphogenesis through the creation of localized microscale defects that may mimic clinical CHD

    Intravenous tPA therapy does not worsen acute intracerebral hemorrhage in mice

    Get PDF
    Tissue plasminogen activator (tPA) is the only FDA-approved treatment for reperfusing ischemic strokes. But widespread use of tPA is still limited by fears of inadvertently administering tPA in patients with intracerebral hemorrhage (ICH). Surprisingly, however, the assumption that tPA will worsen ICH has never been biologically tested. Here, we assessed the effects of tPA in two models of ICH. In a mouse model of collagenase-induced ICH, hemorrhage volumes and neurological deficits after 24 hrs were similar in saline controls and tPA-treated mice, whereas heparin-treated mice had 3-fold larger hematomas. In a model of laser-induced vessel rupture, tPA also did not worsen hemorrhage volumes, while heparin did. tPA is known to worsen neurovascular injury by amplifying matrix metalloproteinases during cerebral ischemia. In contrast, tPA did not upregulate matrix metalloproteinases in our mouse ICH models. In summary, our experimental data do not support the assumption that intravenous tPA has a deleterious effect in acute ICH. However, due to potential species differences and the inability of models to fully capture the dynamics of human ICH, caution is warranted when considering the implications of these findings for human therapy

    Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels

    Get PDF
    Arteriovenous (AV) malformation (AVM) is a devastating condition characterized by focal lesions of enlarged, tangled vessels that shunt blood from arteries directly to veins. AVMs can form anywhere in the body and can cause debilitating ischemia and life-threatening hemorrhagic stroke. The mechanisms that underlie AVM formation remain poorly understood. Here, we examined the cellular and hemodynamic changes at the earliest stages of brain AVM formation by time-lapse two-photon imaging through cranial windows of mice expressing constitutively active Notch4 (Notch4*). AVMs arose from enlargement of preexisting microvessels with capillary diameter and blood flow and no smooth muscle cell coverage. AV shunting began promptly after Notch4* expression in endothelial cells (ECs), accompanied by increased individual EC areas, rather than increased EC number or proliferation. Alterations in Notch signaling in ECs of all vessels, but not arteries alone, affected AVM formation, suggesting that Notch functions in the microvasculature and/or veins to induce AVM. Increased Notch signaling interfered with the normal biological control of hemodynamics, permitting a positive feedback loop of increasing blood flow and vessel diameter and driving focal AVM growth from AV connections with higher blood velocity at the expense of adjacent AV connections with lower velocity. Endothelial expression of constitutively active Notch1 also led to brain AVMs in mice. Our data shed light on cellular and hemodynamic mechanisms underlying AVM pathogenesis elicited by increased Notch signaling in the endothelium.American Heart Association (Grant 0715062Y)Tobacco-Related Disease Research Program (Predoctoral Fellowship 18DT-0009

    Cortical Microhemorrhages Cause Local Inflammation but Do Not Trigger Widespread Dendrite Degeneration

    Get PDF
    Microhemorrhages are common in the aging brain, and their incidence is correlated with increased risk of neurodegenerative disease. Past work has shown that occlusion of individual cortical microvessels as well as large-scale hemorrhages can lead to degeneration of neurons and increased inflammation. Using two-photon excited fluorescence microscopy in anesthetized mice, we characterized the acute and chronic dynamics of vessel bleeding, tissue compression, blood flow change, neural degeneration, and inflammation following a microhemorrhage caused by rupturing a single penetrating arteriole with tightly-focused femtosecond laser pulses. We quantified the extravasation of red blood cells (RBCs) and blood plasma into the brain and determined that the bleeding was limited by clotting. The vascular bleeding formed a RBC-filled core that compressed the surrounding parenchymal tissue, but this compression was not sufficient to crush nearby brain capillaries, although blood flow speeds in these vessels was reduced by 20%. Imaging of cortical dendrites revealed no degeneration of the large-scale structure of the dendritic arbor up to 14 days after the microhemorrhage. Dendrites close to the RBC core were displaced by extravasating RBCs but began to relax back one day after the lesion. Finally, we observed a rapid inflammatory response characterized by morphology changes in microglia/macrophages up to 200 µm from the microhemorrhage as well as extension of cellular processes into the RBC core. This inflammation persisted over seven days. Taken together, our data suggest that a cortical microhemorrhage does not directly cause significant neural pathology but does trigger a sustained, local inflammatory response

    PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family

    Get PDF
    PREX (http://www.csb.wfu.edu/prex/) is a database of currently 3516 peroxiredoxin (Prx or PRDX) protein sequences unambiguously classified into one of six distinct subfamilies. Peroxiredoxins are a diverse and ubiquitous family of highly expressed, cysteine-dependent peroxidases that are important for antioxidant defense and for the regulation of cell signaling pathways in eukaryotes. Subfamily members were identified using the Deacon Active Site Profiler (DASP) bioinformatics tool to focus in on functionally relevant sequence fragments surrounding key residues required for protein activity. Searches of this database can be conducted by protein annotation, accession number, PDB ID, organism name or protein sequence. Output includes the subfamily to which each classified Prx belongs, accession and GI numbers, genus and species and the functional site signature used for classification. The query sequence is also presented aligned with a select group of Prxs for manual evaluation and interpretation by the user. A synopsis of the characteristics of members of each subfamily is also provided along with pertinent references

    Brain capillary networks across species : a few simple organizational requirements are sufficient to reproduce both structure and function

    Get PDF
    Despite the key role of the capillaries in neurovascular function, a thorough characterization of cerebral capillary network properties is currently lacking. Here, we define a range of metrics (geometrical, topological, flow, mass transfer, and robustness) for quantification of structural differences between brain areas, organs, species, or patient populations and, in parallel, digitally generate synthetic networks that replicate the key organizational features of anatomical networks (isotropy, connectedness, space-filling nature, convexity of tissue domains, characteristic size). To reach these objectives, we first construct a database of the defined metrics for healthy capillary networks obtained from imaging of mouse and human brains. Results show that anatomical networks are topologically equivalent between the two species and that geometrical metrics only differ in scaling. Based on these results, we then devise a method which employs constrained Voronoi diagrams to generate 3D model synthetic cerebral capillary networks that are locally randomized but homogeneous at the network-scale. With appropriate choice of scaling, these networks have equivalent properties to the anatomical data, demonstrated by comparison of the defined metrics. The ability to synthetically replicate cerebral capillary networks opens a broad range of applications, ranging from systematic computational studies of structure-function relationships in healthy capillary networks to detailed analysis of pathological structural degeneration, or even to the development of templates for fabrication of 3D biomimetic vascular networks embedded in tissue-engineered constructs
    corecore