2,795 research outputs found

    Dynamic analysis of flexible rotor-bearing systems using a modal approach

    Get PDF
    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response

    Discrete Point Flow Networks for Efficient Point Cloud Generation

    Get PDF
    Generative models have proven effective at modeling 3D shapes and their statistical variations. In this paper we investigate their application to point clouds, a 3D shape representation widely used in computer vision for which, however, only few generative models have yet been proposed. We introduce a latent variable model that builds on normalizing flows with affine coupling layers to generate 3D point clouds of an arbitrary size given a latent shape representation. To evaluate its benefits for shape modeling we apply this model for generation, autoencoding, and single-view shape reconstruction tasks. We improve over recent GAN-based models in terms of most metrics that assess generation and autoencoding. Compared to recent work based on continuous flows, our model offers a significant speedup in both training and inference times for similar or better performance. For single-view shape reconstruction we also obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.Comment: In ECCV'2

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende

    Influence of substrate initial temperature on adhesion strength of ice on aluminum alloy

    Get PDF
    The present work investigates the influence of the initial temperature of a substrate on the ice adhesion strength by analyzing the freezing characteristics of water droplets adhered to the substrate. The ice adhesion strength on 6061 aluminum alloy was measured using a dedicated strength testing apparatus, and the freezing process of water droplets at different initial temperatures of the alloy surface was examined with a microscope. The results of the experiments show that the ice adhesion strength on the aluminum alloy surface at ambient temperature was twice as large as that measured on a colder surface (e.g., −5 °C). Combining the experimental results with the microscopic observation of the freezing process revealed that at high initial surface temperature (i.e. equal to 18 °C), the water droplets thoroughly spread on the aluminum alloy surface at high temperature, formed a larger contact area. In addition, the initial surface temperature would influence the type of crystallization. Moreover, the advantages and disadvantages of thermal de-icing approaches, widely used in engineering (especially in the high-speed rail and aerospace fields), were discussed

    Noncompliance With Safety Guidelines as a Free-Riding Strategy: An Evolutionary Game-Theoretic Approach to Cooperation During the COVID-19 Pandemic

    Get PDF
    Evolutionary game theory and public goods games offer an important framework to understand cooperation during pandemics. From this perspective, the COVID-19 situation can be conceptualized as a dilemma where people who neglect safety precautions act as free riders, because they get to enjoy the benefits of decreased health risk from others’ compliance with policies despite not contributing to or even undermining public safety themselves. At the same time, humans appear to carry a suite of evolved psychological mechanisms aimed at curbing free riding in order to ensure the continued provision of public goods, which can be leveraged to develop more effective measures to promote compliance with regulations. We also highlight factors beyond free riding that reduce compliance rates, such as the emergence of conspiratorial thinking, which seriously undermine the effectiveness of measures to suppress free riding. Together, the current paper outlines the social dynamics that occur in public goods dilemmas involving the spread of infectious disease, highlights the utility and limits of evolutionary game-theoretic approaches for COVID-19 management, and suggests novel directions based on emerging challenges to cooperation

    Simulation studies of permeation through two-dimensional ideal polymer networks

    Full text link
    We study the diffusion process through an ideal polymer network, using numerical methods. Polymers are modeled by random walks on the bonds of a two-dimensional square lattice. Molecules occupy the lattice cells and may jump to the nearest-neighbor cells, with probability determined by the occupation of the bond separating the two cells. Subjected to a concentration gradient across the system, a constant average current flows in the steady state. Its behavior appears to be a non-trivial function of polymer length, mass density and temperature, for which we offer qualitative explanations.Comment: 8 pages, 4 figure

    Relative improvements in road mobility as compared to improvements in road accessibility and urban growth: a panel data analysis

    Get PDF
    Previous studies revealed that the development of road infrastructure contributed positively to urban growth. However, the demand for and supply of different road types may change according to the level of urbanization, and this might have a significant impact on urban growth. The objectives of this study were twofold. First, to determine the investment level needed for different road types to facilitate urban growth at different levels of urbanization. Second, to understand how the development of different road types promotes export-led urban growth. We apply a fixed-effects panel linear regression analysis on a panel of 60 countries over the period of 1980–2010. The evidence presented in this study suggests that improvements in road mobility promoted export-led urban growth in countries with a low level of urbanization. This implies that policies to facilitate export should be executed in conjunction with high-mobility road network expansion to increase urbanization, especially in countries with a low level of urbanization that commonly suffer from low growth rates and that have a low level of high mobility road networks. Such expansion in road mobility is required to fulfil demands for long-distance travel to transport people from rural to urban areas. In contrast, in countries with a high level of urbanization, more investment is needed to develop roads with high accessibility. Such roads are needed to fulfil daily travel demands as a consequence of urban sprawl and decentralization of employment and populations. Moreover, the evidence shows that per capita education expenditure and physical capital stock per worker contributed to urban growth

    Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures

    Get PDF
    This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.
    corecore