7 research outputs found
High-spin structure in Er-157 up to and above band termination
The high-spin structure of Er-157 has been greatly expanded using the Gammasphere spectrometer to investigate the Cd-114(Ca-48,5n) reaction at 215 MeV. Many new transitions have been placed in a greatly augmented level scheme up to spin 40h with many collective rotational sequences established. With increasing angular momentum, this nucleus undergoes a Coriolis-induced shape transition from a deformed state of collective rotation to a noncollective configuration. This transition manifests itself as favored band termination near I=45h in three rotational structures. Many weakly populated states lying at high excitation energy that decay into the terminating states have been discovered. Cranked-Nilsson-Strutinsky calculations suggest that the levels that feed the terminating states arise from weakly collective configurations that break the Z=64 semimagic core
High-Spin Structure beyond Band Termination in <sup>157</sup>Er
The angular-momentum induced transition from a deformed state of collective rotation to a noncollective configuration has been studied. In Er-157 this transition manifests itself as favored band termination near I=45 (h) over bar. The feeding of these band terminating states has been investigated for the first time using the Gammasphere spectrometer. Many weakly populated states lying at high excitation energy that decay into these special states have been discovered. Cranked Nilsson-Strutinsky calculations suggest that these states arise from weakly collective "core-breaking" configurations
Recommended from our members
Evolution of structure and shapes in Er158 to ultrahigh spin
The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin
Evolution of structure and shapes in 158Er to ultrahigh spin
The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin
Observation of states beyond band termination in Er-156,Er-157,Er-158 and strongly deformed structures in Hf-173,Hf-174,Hf-175
High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of Er-156,Er-157,Er-158 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in Hf-174, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures