52 research outputs found

    Physiology of Angina and Its Alleviation With Nitroglycerin: Insights From Invasive Catheter Laboratory Measurements During Exercise

    Get PDF
    BACKGROUND: The mechanisms governing exercise-induced angina and its alleviation by the most commonly used antianginal drug, nitroglycerin, are incompletely understood. The purpose of this study was to develop a method by which the effects of antianginal drugs could be evaluated invasively during physiological exercise to gain further understanding of the clinical impact of angina and nitroglycerin. METHODS: Forty patients (mean age, 65.2±7.6 years) with exertional angina and coronary artery disease underwent cardiac catheterization via radial access and performed incremental exercise using a supine cycle ergometer. As they developed limiting angina, sublingual nitroglycerin was administered to half the patients, and all patients continued to exercise for 2 minutes at the same workload. Throughout exercise, distal coronary pressure and flow velocity and central aortic pressure were recorded with sensor wires. RESULTS: Patients continued to exercise after nitroglycerin administration with less ST-segment depression (P=0.003) and therefore myocardial ischemia. Significant reductions in afterload (aortic pressure, P=0.030) and myocardial oxygen demand were seen (tension-time index, P=0.024; rate-pressure product, P=0.046), as well as an increase in myocardial oxygen supply (Buckberg index, P=0.017). Exercise reduced peripheral arterial wave reflection (P<0.05), which was not further augmented by the administration of nitroglycerin (P=0.648). The observed increases in coronary pressure gradient, stenosis resistance, and flow velocity did not reach statistical significance; however, the diastolic velocity–pressure gradient relation was consistent with a significant increase in relative stenosis severity (k coefficient, P<0.0001), in keeping with exerciseinduced vasoconstriction of stenosed epicardial segments and dilatation of normal segments, with trends toward reversal with nitroglycerin. CONCLUSIONS: The catheterization laboratory protocol provides a model to study myocardial ischemia and the actions of novel and established antianginal drugs. Administration of nitroglycerin causes changes in the systemic and coronary circulation that combine to reduce myocardial oxygen demand and to increase supply, thereby attenuating exerciseinduced ischemia. Designing antianginal therapies that exploit these mechanisms may provide new therapeutic strategies

    Noninvasive assessment of asthma severity using pulse oximeter plethysmograph estimate of pulsus paradoxus physiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulsus paradoxus estimated by dynamic change in area under the oximeter plethysmograph waveform (PEP) might provide a measure of acute asthma severity. Our primary objective was to determine how well PEP correlates with forced expiratory volume in 1-second (%FEV<sub>1</sub>) (criterion validity) and change of %FEV<sub>1 </sub>(responsiveness) during treatment in pediatric patients with acute asthma exacerbations.</p> <p>Methods</p> <p>We prospectively studied subjects 5 to 17 years of age with asthma exacerbations. PEP, %FEV<sub>1</sub>, airway resistance and accessory muscle use were recorded at baseline and at 2 and 4 hours after initiation of corticosteroid and bronchodilator treatments. Statistical associations were tested with Pearson or Spearman rank correlations, logistic regression using generalized estimating equations, or Wilcoxon rank sum tests.</p> <p>Results</p> <p>We studied 219 subjects (median age 9 years; male 62%; African-American 56%). Correlation of PEP with %FEV<sub>1 </sub>demonstrated criterion validity (r = - 0.44, 95% confidence interval [CI], - 0.56 to - 0.30) and responsiveness at 2 hours (r = - 0.31, 95% CI, - 0.50 to - 0.09) and 4 hours (r = - 0.38, 95% CI, - 0.62 to - 0.07). PEP also correlated with airway resistance at baseline (r = 0.28 for ages 5 to 10; r = 0.45 for ages 10 to 17), but not with change over time. PEP was associated with accessory muscle use (OR 1.16, 95% CI, 1.11 to 1.21, P < 0.0001).</p> <p>Conclusions</p> <p>PEP demonstrates criterion validity and responsiveness in correlations with %FEV<sub>1</sub>. PEP correlates with airway resistance at baseline and is associated with accessory muscle use at baseline and at 2 and 4 hours after initiation of treatment. Incorporation of this technology into contemporary pulse oximeters may provide clinicians improved parameters with which to make clinical assessments of asthma severity and response to treatment, particularly in patients who cannot perform spirometry because of young age or severity of illness. It might also allow for earlier recognition and improved management of other disorders leading to elevated pulsus paradoxus.</p

    Lifestyle intervention in obese pregnancy and cardiac remodelling in 3-year olds: children of the UPBEAT RCT

    Get PDF
    Background/Objectives: Obesity in pregnancy has been associated with increased childhood cardiometabolic risk and reduced life expectancy. The UK UPBEAT multicentre randomised control trial was a lifestyle intervention of diet and physical activity in pregnant women with obesity. We hypothesised that the 3-year-old children of women with obesity would have heightened cardiovascular risk compared to children of normal BMI women, and that the UPBEAT intervention would mitigate this risk. Subjects/Methods: Children were recruited from one UPBEAT trial centre. Cardiovascular measures included blood pressure, echocardiographic assessment of cardiac function and dimensions, carotid intima-media thickness and heart rate variability (HRV) by electrocardiogram. Results: Compared to offspring of normal BMI women (n = 51), children of women with obesity from the trial standard care arm (n = 39) had evidence of cardiac remodelling including increased interventricular septum (IVS; mean difference 0.04 cm; 95% CI: 0.018 to 0.067), posterior wall (PW; 0.03 cm; 0.006 to 0.062) and relative wall thicknesses (RWT; 0.03 cm; 0.01 to 0.05) following adjustment. Randomisation of women with obesity to the intervention arm (n = 31) prevented this cardiac remodelling (intervention effect; mean difference IVS −0.03 cm (−0.05 to −0.008); PW −0.03 cm (−0.05 to −0.01); RWT −0.02 cm (−0.04 to −0.005)). Children of women with obesity (standard care arm) compared to women of normal BMI also had elevated minimum heart rate (7 bpm; 1.41 to 13.34) evidence of early diastolic dysfunction (e prime) and increased sympathetic nerve activity index by HRV analysis. Conclusions: Maternal obesity was associated with left ventricular concentric remodelling in 3-year-old offspring. Absence of remodelling following the maternal intervention infers in utero origins of cardiac remodelling. Clinical trial registry name and registration number: The UPBEAT trial is registered with Current Controlled Trials, ISRCTN89971375

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo.

    No full text
    BACKGROUND: Nitric oxide (NO) has a pivotal role in the regulation of vascular tone and blood flow, with dysfunctional release contributing to disease pathophysiology. These effects have been attributed to NO production by the endothelial NO synthase (eNOS); however, recent evidence suggests that a neuronal NO synthase (nNOS) may also be expressed in arterial vessels. METHODS AND RESULTS: We undertook a first-in-humans investigation of the role of nNOS in the local regulation of vascular blood flow in healthy subjects. Brachial artery infusion of the nNOS-specific inhibitor S-methyl-L-thiocitrulline (SMTC, 0.025 micromol/min to 0.2 micromol/min) caused a dose-dependent reduction in basal flow, with a 30.1+/-3.8% decrease at the highest dose (n=10; mean+/-SE; P&lt;0.01). The effect of SMTC was abolished by coinfusion of the NO synthase substrate L-arginine but was unaffected by D-arginine. A similar reduction in basal flow with the nonselective NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA; 37.4+/-3.1%, n=10) required a 20-fold higher dose of 4 micromol/min. At doses that produced comparable reductions in basal flow, only L-NMMA (4 micromol/min) and not SMTC (0.2 micromol/min) inhibited acetylcholine-induced vasodilation; however, both SMTC and L-NMMA inhibited the forearm vasodilator response to mental stress. CONCLUSIONS: Basal forearm blood flow in humans is regulated by nNOS-derived NO, in contrast to the acetylcholine-stimulated increase in blood flow, which, as shown previously, is mediated primarily by eNOS. These data indicate that vascular nNOS has a distinct local role in the physiological regulation of human microvascular tone in vivo
    corecore