12,069 research outputs found

    A generalized spin model of financial markets

    Full text link
    We reformulate the Cont-Bouchaud model of financial markets in terms of classical "super-spins" where the spin value is a measure of the number of individual traders represented by a portfolio manager of an investment agency. We then extend this simplified model by switching on interactions among the super-spins to model the tendency of agencies getting influenced by the opinion of other managers. We also introduce a fictitious temperature (to model other random influences), and time-dependent local fields to model slowly changing optimistic or pessimistic bias of traders. We point out close similarities between the price variations in our model with NN super-spins and total displacements in an NN-step Levy flight. We demonstrate the phenomena of natural and artificially created bubbles and subsequent crashes as well as the occurrence of "fat tails" in the distributions of stock price variations.Comment: 11 pages LATEX, 7 postscript figures; longer text with theoretical analysis, more accurate numerical data, better terminology, additional references. Accepted for publication in European Physical Journal

    Competition of coarsening and shredding of clusters in a driven diffusive lattice gas

    Get PDF
    We investigate a driven diffusive lattice gas model with two oppositely moving species of particles. The model is motivated by bi-directional traffic of ants on a pre-existing trail. A third species, corresponding to pheromones used by the ants for communication, is not conserved and mediates interactions between the particles. Here we study the spatio-temporal organization of the particles. In the uni-directional variant of this model it is known to be determined by the formation and coarsening of ``loose clusters''. For our bi-directional model, we show that the interaction of oppositely moving clusters is essential. In the late stages of evolution the cluster size oscillates because of a competition between their `shredding' during encounters with oppositely moving counterparts and subsequent "coarsening" during collision-free evolution. We also establish a nontrivial dependence of the spatio-temporal organization on the system size

    Length control of microtubules by depolymerizing motor proteins

    Get PDF
    In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to the microtubule tip(s) by diffusion or directed walk and, then, depolymerize the microtubule from the tip(s) after accumulating there. We develop a quantitative model to study the depolymerizing action of such a generic motor protein, and its possible effects on the length distribution of microtubules. We show that, when the motor protein concentration in solution exceeds a critical value, a steady state is reached where the length distribution is, in general, non-monotonic with a single peak. However, for highly processive motors and large motor densities, this distribution effectively becomes an exponential decay. Our findings suggest that such motor proteins may be selectively used by the cell to ensure precise control of MT lengths. The model is also used to analyze experimental observations of motor-induced depolymerization.Comment: Added section with figures and significantly expanded text, current version to appear in Europhys. Let

    More security or less insecurity

    Get PDF
    We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio

    Cluster formation and anomalous fundamental diagram in an ant trail model

    Get PDF
    A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35, L573 (2002)}), motivated by the motions of ants in a trail, is investigated in detail in this paper. The flux of ants in this model is sensitive to the probability of evaporation of pheromone, and the average speed of the ants varies non-monotonically with their density. This remarkable property is analyzed here using phenomenological and microscopic approximations thereby elucidating the nature of the spatio-temporal organization of the ants. We find that the observations can be understood by the formation of loose clusters, i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file

    Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions

    Full text link
    The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure

    Subtleties in the quasi-classical calculation of Hawking radiation

    Full text link
    he quasi-classical method of deriving Hawking radiation is investigated. In order to recover the original Hawking temperature one must take into account a previously ignored contribution coming from the temporal part of the action. This contribution plus a contribution coming from the spatial part of the action gives the correct temperature.Comment: 6 pages revtex. Honorable Mention in 2008 GRF essay contest, typos fixed, sign errors corrected. To be published in Special Issue of IJMP

    Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic

    Full text link
    We study the impact of global traffic light control strategies in a recently proposed cellular automaton model for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting from a simple synchronized strategy we show that the capacity of the network strongly depends on the cycle times of the traffic lights. Moreover we point out that the optimal time periods are determined by the geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchronized traffic lights the derivation of the optimal cycle times in the network can be reduced to a simpler problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to obtain an enhanced throughput in the model improved global strategies are tested, e.g., green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure

    A Microscopic Model for the Black hole - Black string Phase Transition

    Get PDF
    Computations in general relativity have revealed an interesting phase diagram for the black hole - black string phase transition, with three different black objects present for a range of mass values. We can add charges to this system by `boosting' plus dualities; this makes only kinematic changes in the gravity computation but has the virtue of bringing the system into the near-extremal domain where a microscopic model can be conjectured. When the compactification radius is very large or very small then we get the microscopic models of 4+1 dimensional near-extremal holes and 3+1 dimensional near-extremal holes respectively (the latter is a uniform black string in 4+1 dimensions). We propose a simple model that interpolates between these limits and reproduces most of the features of the phase diagram. These results should help us understand how `fractionation' of branes works in general situations
    • …
    corecore