We investigate a driven diffusive lattice gas model with two oppositely
moving species of particles. The model is motivated by bi-directional traffic
of ants on a pre-existing trail. A third species, corresponding to pheromones
used by the ants for communication, is not conserved and mediates interactions
between the particles. Here we study the spatio-temporal organization of the
particles. In the uni-directional variant of this model it is known to be
determined by the formation and coarsening of ``loose clusters''. For our
bi-directional model, we show that the interaction of oppositely moving
clusters is essential. In the late stages of evolution the cluster size
oscillates because of a competition between their `shredding' during encounters
with oppositely moving counterparts and subsequent "coarsening" during
collision-free evolution. We also establish a nontrivial dependence of the
spatio-temporal organization on the system size