12,994 research outputs found
More security or less insecurity
We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
Stochastic kinetics of ribosomes: single motor properties and collective behavior
Synthesis of protein molecules in a cell are carried out by ribosomes. A
ribosome can be regarded as a molecular motor which utilizes the input chemical
energy to move on a messenger RNA (mRNA) track that also serves as a template
for the polymerization of the corresponding protein. The forward movement,
however, is characterized by an alternating sequence of translocation and
pause. Using a quantitative model, which captures the mechanochemical cycle of
an individual ribosome, we derive an {\it exact} analytical expression for the
distribution of its dwell times at the successive positions on the mRNA track.
Inverse of the average dwell time satisfies a ``Michaelis-Menten-like''
equation and is consistent with the general formula for the average velocity of
a molecular motor with an unbranched mechano-chemical cycle. Extending this
formula appropriately, we also derive the exact force-velocity relation for a
ribosome. Often many ribosomes simultaneously move on the same mRNA track,
while each synthesizes a copy of the same protein. We extend the model of a
single ribosome by incorporating steric exclusion of different individuals on
the same track. We draw the phase diagram of this model of ribosome traffic in
3-dimensional spaces spanned by experimentally controllable parameters. We
suggest new experimental tests of our theoretical predictions.Comment: Final published versio
Cluster formation and anomalous fundamental diagram in an ant trail model
A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35,
L573 (2002)}), motivated by the motions of ants in a trail, is investigated in
detail in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants
varies non-monotonically with their density. This remarkable property is
analyzed here using phenomenological and microscopic approximations thereby
elucidating the nature of the spatio-temporal organization of the ants. We find
that the observations can be understood by the formation of loose clusters,
i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file
Semiclassical Methods for Hawking Radiation from a Vaidya Black Hole
We derive the general form of Hawking temperature for Vaidya black hole in
the tunneling pictures. This kind of black hole is regarded as the description
of a more realistic one since it's time dependent decreasing mass due to the
evaporation process. Clearly, the temperature would be time dependent as our
findings. We use the semiclassical methods, namely radial null geodesic and
complex paths methods. Both methods are found to give the same results. Then,
we discuss the possible form of corresponding entropy.Comment: REVTeX 4, 11 pages, no figures, accepted for publication in IJMPA;
v2: eq.5 is correcte
Flow properties of driven-diffusive lattice gases: theory and computer simulation
We develop n-cluster mean-field theories (0 < n < 5) for calculating the flow
properties of the non-equilibrium steady-states of the Katz-Lebowitz-Spohn
model of the driven diffusive lattice gas, with attractive and repulsive
inter-particle interactions, in both one and two dimensions for arbitrary
particle densities, temperature as well as the driving field. We compare our
theoretical results with the corresponding numerical data we have obtained from
the computer simulations to demonstrate the level of accuracy of our
theoretical predictions. We also compare our results with those for some other
prototype models, notably particle-hopping models of vehicular traffic, to
demonstrate the novel qualitative features we have observed in the
Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequences of
repulsive inter-particle interactions.Comment: 12 RevTex page
Localisation in focal epilepsy: a practical guide
The semiology of epileptic seizures reflects activation, or dysfunction, of areas of brain (often termed the symptomatogenic zone) as a seizure begins and evolves. Specific semiologies in focal epilepsies provide an insight into the location of the seizure onset zone, which is particularly important for presurgical epilepsy assessment. The correct diagnosis of paroxysmal events also depends on the clinician being familiar with the spectrum of semiologies. Here, we summarise the current literature on localisation in focal epilepsies using illustrative cases and discussing possible pitfalls in localisation
Lee-Yang zeros and phase transitions in nonequilibrium steady states
We consider how the Lee-Yang description of phase transitions in terms of
partition function zeros applies to nonequilibrium systems. Here one does not
have a partition function, instead we consider the zeros of a steady-state
normalization factor in the complex plane of the transition rates. We obtain
the exact distribution of zeros in the thermodynamic limit for a specific
model, the boundary-driven asymmetric simple exclusion process. We show that
the distributions of zeros at the first and second order nonequilibrium phase
transitions of this model follow the patterns known in the Lee-Yang equilibrium
theory.Comment: 4 pages RevTeX4 with 4 figures; revised version to appear in Phys.
Rev. Let
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
- …