research

Lee-Yang zeros and phase transitions in nonequilibrium steady states

Abstract

We consider how the Lee-Yang description of phase transitions in terms of partition function zeros applies to nonequilibrium systems. Here one does not have a partition function, instead we consider the zeros of a steady-state normalization factor in the complex plane of the transition rates. We obtain the exact distribution of zeros in the thermodynamic limit for a specific model, the boundary-driven asymmetric simple exclusion process. We show that the distributions of zeros at the first and second order nonequilibrium phase transitions of this model follow the patterns known in the Lee-Yang equilibrium theory.Comment: 4 pages RevTeX4 with 4 figures; revised version to appear in Phys. Rev. Let

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019