We consider how the Lee-Yang description of phase transitions in terms of
partition function zeros applies to nonequilibrium systems. Here one does not
have a partition function, instead we consider the zeros of a steady-state
normalization factor in the complex plane of the transition rates. We obtain
the exact distribution of zeros in the thermodynamic limit for a specific
model, the boundary-driven asymmetric simple exclusion process. We show that
the distributions of zeros at the first and second order nonequilibrium phase
transitions of this model follow the patterns known in the Lee-Yang equilibrium
theory.Comment: 4 pages RevTeX4 with 4 figures; revised version to appear in Phys.
Rev. Let