9 research outputs found
Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown \u3ci\u3eRhodopseudomonas palustris\u3c/i\u3e CGA009 through a Genome-Scale Metabolic and Expression Model
Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective
Machine Learning and Metabolic Model Guided CRISPRi Reveals a Central Role for Phosphoglycerate Mutase in \u3ci\u3eChlamydia trachomatis\u3c/i\u3e Persistence
Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence is an adaptive response or lack of it. To understand that transcriptomics data were collected for nutrientsufficient and nutrient-starved CTL. Applying machine learning approaches on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions without having any global stress regulator. This indicated that CTL’s stress response is due to lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence. Later, pgm was found to have the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm and tryptophan starvation experiments revealed the importance of this gene in inducing persistence. Hence, this work, for the first time, introduced thermodynamics and enzyme-cost as tools to gain deeper understanding on CTL persistence
A multi-organ maize metabolic model connects temperature stress with energy production and reducing power generation
Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ maize metabolicmodel, iZMA6517, and contextualized itwith heat and cold stress transcriptomics data using expression distributed reaction flux measurement (EXTREAM) algorithm. Furthermore, implementing metabolic bottleneck analysis on contextualized models revealed differences between these stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy generation bottlenecks.We also performed thermodynamic driving force analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature of temperature stress responses. Thus, a temperaturetolerant maize ideotype can be engineered by leveraging the proposed thermodynamics-reducing powerenergy generation axis.We experimentally inoculated maize root with a beneficial mycorrhizal fungus, Rhizophagus irregularis, and as a proof-of-concept demonstrated its efficacy in alleviating temperature stress. Overall, this study will guide the engineering effort of temperature stress-tolerant maize ideotypes
The Inherited Intestinal Microbiota from Myeloid-Specific ZIP8KO Mice Impairs Pulmonary Host Defense against Pneumococcal Pneumonia
Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans
A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors
With a single apparatus and very short experimentation times, we have assessed phase equilibria, apparent kinetics and morphology of methane gas hydrates in the presence of thermodynamic inhibitors ethane-1,2-diol (MEG) and sodium chloride (NaCl); and kinetic hydrate inhibitor polyvinyl-pyrrolidone (PVP). Tight, local temperature control produced highly repeatable crystal morphologies in constant temperature systems and in systems subject to fixed temperature gradients. Hydrate-Liquid-Vapor (HLV) equilibrium points were obtained with minimal temperature and pressure uncertainties (u T avg = 0.13 K and u p = 0.005 MPa). By applying a temperature gradient during hydrate formation, it was possible to study multiple subcoolings with a single experiment. Hydrate growth velocities were determined both under temperature gradients and under constant temperature growth. It was found that both NaCl and MEG act as kinetic inhibitors at the studied concentrations. Finally, insights on the mechanism of action of classical inhibitors are presented
Supplementation of Sulfide or Acetate and 2-Mercaptoethane Sulfonate Restores Growth of the \u3ci\u3eMethanosarcina acetivorans ΔhdrABC\u3c/i\u3e Deletion Mutant during Methylotrophic Methanogenesis
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments
Supplementation of Sulfide or Acetate and 2-Mercaptoethane Sulfonate Restores Growth of the <i>Methanosarcina acetivorans</i> Δ<i>hdrABC</i> Deletion Mutant during Methylotrophic Methanogenesis
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments
Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in Chlamydia trachomatis persistence
ABSTRACT Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL’s stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate that pgm has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence.IMPORTANCEThis study uses a metabolic model to investigate factors that contribute to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence—that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena
Maize<i>(Zea mays</i>L.) interaction with the arbuscular mycorrhizal fungus<i>Rhizophagus irregularis</i>allows mitigation of nitrogen deficiency stress: physiological and molecular characterization
International audienceMaize is currently the most productive cereal crop in the world (www.faostat.org). Maize can form a symbiotic relationship with the Arbuscular Mycorrhizal Fungus MF, Rhizophagus irregularis. In this relationship, the fungus provides the plant with additional water and mineral nutrients, while the plant supplies carbon compounds to the fungus. Two maize lines were studied, and they exhibited contrasting responses to AMF inoculation based on their physiological and molecular characteristics. Interestingly, the beneficial effects of the AMF were observed mainly under conditions of limited N fertilization. Under such conditions, the AMF helped maintain plant biomass production even when there was a significant reduction in N supply. The availability of nitrogen was found to be a crucial factor influencing all the traits studied. This suggests that the level of N supply plays a pivotal role in determining how the maize plants interact with the AMF. Despite the two maize lines showing different transcriptomic and metabolomic responses to R. irregularis, their agro-physiological traits remained similar. This indicates that while there may be genetic differences in how the plants respond at the molecular level, the overall growth and productivity outcomes are comparable. Both the plant and fungal transcriptomes were more significantly influenced by the level of N nutrition rather than the specific maize genotype. This suggests that N availability has a more profound impact on gene expression in both organisms than the genetic makeup of the maize plant. To understand the metabolic implications of this symbiotic relationship, we integrated transcriptomic data into a multi-organ Genome-scale metabolic model (GSM) called iZMA6517 based on a stoichiometric approach. This modelling approach highlighted nucleotide and ureides metabolism as previously unrecognized factors contributing to the symbiotic N nutrition facilitated by R. irregularis, thereby enhancing maize growth