13,682 research outputs found
A new cellular automata model for city traffic
We present a new cellular automata model of vehicular traffic in cities by
combining ideas borrowed from the Biham-Middleton-Levine (BML) model of city
traffic and the Nagel-Schreckenberg (NaSch) model of highway traffic. The model
exhibits a dynamical phase transition to a completely jammed phase at a
critical density which depends on the time periods of the synchronized signals.Comment: 6 pages, 5 figures, uses Springer Macros 'lncse', to appear in
"Traffic and Granular Flow '99: Social, Traffic, and Granular Dynamics"
edited by D. Helbing, H. J. Herrmann, M. Schreckenberg, and D. E. Wolf
(Springer, Berlin
Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation
Time-resolved diffraction microscopy technique has been used to observe the
formation of laser-induced periodic surface structures (LIPSS) from the
interaction of a single femtosecond laser pulse (pump) with a nano-scale groove
mechanically formed on a single-crystal Cu substrate. The interaction dynamics
(0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse
from nascent LIPSS formation induced by the pump with an infinity-conjugate
microscopy setup. The LIPSS ripples are observed to form sequentially outward
from the groove edge, with the first one forming after 50 ps. A 1-D analytical
model of electron heating and surface plasmon polariton (SPP) excitation
induced by the interaction of incoming laser pulse with the groove edge
qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure
ECONOMIC AND HYDROLOGIC IMPLICATIONS OF SUSPENDING IRRIGATION IN DRY YEARS
A dry year irrigation suspension has been proposed as a way of reallocating water when aquifer levels are low for the Texas Edwards Aquifer. Under this program, farmers would be paid to suspend irrigation to allow more spring flow or nonagricultural pumping. When irrigation is suspended in the east, springflow response is markedly larger than when suspended in the western portions of the aquifer. Most acreage participates when a $90 per acre payment is offered before the cropping season. Considerably higher payments are needed and less water saved for a suspension program instituted during the cropping season.Crop Production/Industries,
Microscopic energy flows in disordered Ising spin systems
An efficient microcanonical dynamics has been recently introduced for Ising
spin models embedded in a generic connected graph even in the presence of
disorder i.e. with the spin couplings chosen from a random distribution. Such a
dynamics allows a coherent definition of local temperatures also when open
boundaries are coupled to thermostats, imposing an energy flow. Within this
framework, here we introduce a consistent definition for local energy currents
and we study their dependence on the disorder. In the linear response regime,
when the global gradient between thermostats is small, we also define local
conductivities following a Fourier dicretized picture. Then, we work out a
linearized "mean-field approximation", where local conductivities are supposed
to depend on local couplings and temperatures only. We compare the approximated
currents with the exact results of the nonlinear system, showing the
reliability range of the mean-field approach, which proves very good at high
temperatures and not so efficient in the critical region. In the numerical
studies we focus on the disordered cylinder but our results could be extended
to an arbitrary, disordered spin model on a generic discrete structures.Comment: 12 pages, 6 figure
Seismic Capacity of Reinforced Concrete Interior Flat Plate Connections
The demand for modular steel buildings (MSBs) has increased because of the improved quality, fast on-site installation, and lower cost of construction. Steel braced frames are usually utilized to form the lateral load resisting system of MSBs. During earthquakes, the seismic energy is dissipated through yielding of the components of the braced frames, which results in residual drifts. Excessive residual drifts complicate the repair of damaged structures or render them irreparable. Researchers have investigated the use of superelastic shape memory alloys (SMAs) in steel structures to reduce the seismic residual deformations. This study explores the potential of using SMA braces to improve the seismic performance of typical modular steel braced frames. The study utilizes incremental dynamic analysis to judge on the benefits of using such a system. It is observed that utilizing superelastic SMA braces at strategic locations can significantly reduce the inter-storey residual drifts
Calibrated quantum thermometry in cavity optomechanics
Cavity optomechanics has achieved the major breakthrough of the preparation
and observation of macroscopic mechanical oscillators in peculiarly quantum
states. The development of reliable indicators of the oscillator properties in
these conditions is important also for applications to quantum technologies. We
compare two procedures to infer the oscillator occupation number, minimizing
the necessity of system calibrations. The former starts from homodyne spectra,
the latter is based on the measurement of the motional sidebands asymmetry in
heterodyne spectra. Moreover, we describe and discuss a method to control the
cavity detuning, that is a crucial parameter for the accuracy of the latter,
intrinsically superior procedure
Performance and cryptographic evaluation of security protocols in distributed networks using applied pi calculus and Markov Chain
The development of cryptographic protocols goes through two stages, namely, security verification and performance analysis. The verification of the protocol’s security properties could be analytically achieved using threat modelling, or formally using formal methods and model checkers. The performance analysis could be mathematical or simulation-based. However, mathematical modelling is complicated and does not reflect the actual deployment environment of the protocol in the current state of the art. Simulation software provides scalability and can simulate complicated scenarios, however, there are times when it is not possible to use simulations due to a lack of support for new technologies or simulation scenarios. Therefore, this paper proposes a formal method and analytical model for evaluating the performance of security protocols using applied pi-calculus and Markov Chain processes. It interprets algebraic processes and associates cryptographic operatives with quantitative measures to estimate and evaluate cryptographic costs. With this approach, the protocols are presented as processes using applied pi-calculus, and their security properties are an approximate abstraction of protocol equivalence based on the verification from ProVerif and evaluated using analytical and simulation models for quantitative measures. The interpretation of the quantities is associated with process transitions, rates, and measures as a cost of using cryptographic primitives. This method supports users’ input in analysing the protocol’s activities and performance. As a proof of concept, we deploy this approach to assess the performance of security protocols designed to protect large-scale, 5G-based Device-to-Device communications. We also conducted a performance evaluation of the protocols based on analytical and network simulator results to compare the effectiveness of the proposed approach
- …