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Seismic Capacity of Reinforced Concrete Interior Flat Plate Connections 
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2 Alexandria University, Department of Structural Engineering, Alexandria, Egypt. 

Abstract 

Flat plates are widely used in reinforced concrete buildings. Their design is usually based on 

the shear forces and bending moments produced by the gravity loads. During seismic 

activities, the lateral building deformations induce additional shear forces and bending 

moments that they must withstand. To evaluate the seismic moment capacity of a flat plate 

system, an effective slab width needs to be defined. In this paper, grillage analysis is utilized 

to predict the nonlinear lateral behaviour of flat plate buildings. A comprehensive parametric 

study is used to evaluate the effective slab width contributing to the lateral strength of 

residential interior flat plate connections. The studied parameters include span length, bay 

width, column dimensions, and level of column axial load. Both gravity load designed frames 

and moment resisting frames are analysed. The effect of the material safety factors is 

assessed by conducting two sets of analyses using nominal material properties and factored 

material properties. Equations to estimate the effective slab width are proposed. 

Keywords: Modelling, Strength, Flat plate, Effective width, Grillage analysis, Seismic. 
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1. Introduction 

Reinforced Concrete (RC) flat plates simplify the construction process and reduce building 

heights. For low and moderate seismic zones and a maximum building height of 15 m, they 

can be considered as part of the lateral load system as allowed by the National Building Code 

of Canada (NBCC, 2010). For other cases, a stiffer lateral force resisting system such as shear 

walls must be introduced. The flat plate system deforms laterally either as part of a moment 

resisting frame or as part of a building. These deformations result in seismic forces and 

moments that the system must withstand. 

Modelling of flat plates using shell elements to predict their se1sm1c behaviour is 

cumbersome due to both material and geometric nonlinearities. When subjected to service 

gravity loads, flat plates behave within the elastic range and can be modelled using shell 

elements or beam elements (grillage analysis). O'Brien and Keogh (1999) discussed the 

method of modelling a slab by grids of beam elements to predict its elastic behaviour. Two 

assumptions related to thin plate theory are made: (1) the depth of the slab remains 

unchanged, and, thus points across the slab thickness deflect vertically by exactly the same 

amount as points directly above or below them (the assumption is based on the fact that 

strains in the thickness direction are generally small and have negligible effect on the overall 

behaviour of the slab) and (2) the deflection of the slab is mainly caused by flexural stresses 

( effect of shear distortion is ignored). 

A common and practical method for seismic analysis of flat plate systems involves analysing 

two-dimensional frames. The beam elements of these frames represent an effective slab 

width, which is critical to define the frame stiffness and the flexural capacity of the slab. The 

Canadian standard for designing concrete structures (A23.3-04, 2004) specifies an effective 
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slab width factor (a) of 0.2. The slab effective width is equal to a times the bay width (B). 

Based on elastic analysis, Pecknold (1975) presented a values for typical interior panels as a 

function of the column dimension in the span direction ( c1), B, and the span length (L ). Based 

on a limited number of experimental tests, Luo and Durrani (1995) proposed an equation to 

estimate a corresponding to the total unbalanced moment resulting from lateral loads. They 

also proposed a reduction factor to account for the effect of gravity loads. Their equation is 

unsuitable for estimating the slab flexural capacity as it corresponds to the total unbalanced 

moment. Youssef et al. (2014) proposed equations to estimate the effective slab width 

contributing to the lateral stiffness of a flat plate moment frame. However, these equations 

are not suitable for estimating the slab flexural capacity. Other available formulas that were 

based on very limited number of experimental tests include those of Hwang and Moehle 

(1993) and Grossman (1997). 

This paper starts by providing details about the use of grillage analysis to model flat plates. It 

then presents a comprehensive parametric study for interior residential flat plate connections. 

Results from this study are used to propose new effective width formulas suitable for 

calculating the slab flexural capacity considering lateral loads. 

2. Grillage model 

The slab is modelled using a grid of 3D inelastic beam elements. Each beam element 

represents the concrete and reinforcing bars in a width of the slab equal to the spacing 

between the elements. Columns are represented using 3D inelastic beam-column elements. 

The effect of shear deformations on the results is insignificant as compared to flexural 

deformations (O'Brien and Keogh, 1999), and, thus is neglected. Spacing between the beam 
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elements depends on the torsional behaviour of the slab (O'Brien and Keogh, 1999). The 

torsional constant per unit width of any thin plate is twice the second moment of area per unit 

width. To maintain this ratio, a grid spacing of about 1.25 times the depth of slab should be 

used. O'Brien and Keogh (1999) indicated that this spacing might be impractical and can be 

increased up to three times the slab depth without affecting the solution accuracy. The 

torsional behaviour of slabs without shear reinforcement is expected to be linear up to failure, 

and, thus the torsion rigidity was assumed equal to the elastic value. 

Fiber modelling approach was employed to represent the distribution of material nonlinearity 

along the length and cross-section of each member. The sectional stress-strain state of the 

elements was obtained through the integration of the nonlinear uniaxial stress-strain response 

of the individual fibers in which the section was subdivided. 

Concrete was modelled using the uniaxial nonlinear constant confinement model of 

Martinez-Rueda and Elnashai (1997). The constant confining pressure provided by the lateral 

transverse reinforcement was incorporated through the rules proposed by Mander et al. 

(1988). The parameters that define the model are: concrete compressive strength (fc\ 

concrete tensile strength (ft), strain at peak stress (ea), and confinement factor (kc). A uniaxial 

bilinear stress-strain model was used to model the reinforcing bars. The parameters defining 

the model are: the modulus of elasticity (Es), yield strength (fy), and strain hardening 

parameter (µ ). Flexural failure was assumed to occur when the unconfined concrete of the 

slab reaches its crushing strain that ranges between 0.003 and 0.004 (Park and Paulay, 1972). 

Shear failure was assumed to occur when the shear force exceeds the nominal shear 

resistance specified in A23.3-04 (2004). 

4 



The grillage analysis technique was validated by Youssef et al. (2014) using the experimental 

results by Robertson and Durrani (1990). The technique was found to accurately predict 

behaviour of the tested slabs up to failure. 

3. Flexural capacity of a flat plate system 

The validated grillage analysis is used to conduct a parametric study to evaluate the effective 

width that can be used to estimate the nominal and factored flexural capacity of a flat plate 

system. Two types of connections are considered; connections designed for gravity loads and 

those designed for lateral loads. Fig. 1 shows a typical connection. 

Gmvity load, w 

I' 

wL-2R, 

I-- f ---- f --I 2 2 

I, 

2 

,. 
2 

Fig. 1 A typical Interior slab-column connection subjected to gravity and lateral loads. 

The considered geometric parameters are: span length, bay width, and column dimension in 

the span direction. Values for the considered parameters are shown in Table 1. The story 

height is taken as 3 m. While varying one geometric parameter, the other two parameters are 
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assumed to remain constant at the mean value. The variation of the column axial load from 

floor to floor was considered by designing connections with different column axial loads. 

Nominal and factored ratios of column axial loads relative to that of the column supporting 

one storey (.!:.. and P, J are shown in Table 1. Compressive strength of concrete and yield 
R Pf! 

strength of steel are taken as 25 and 400 MPa, respectively. These values are widely used for 

flat plate structures. 

Table 1: Properties of considered connections 

Square 
Slab Nominal axial Factored axial 

Span 
Bay 

Column p P, Connection width thickness 
(m) 

(m) 
dimension 

(mm) 
load ratio, - load ratio, -

(mm) R P,1 
Cl 4 6 700 200 
C2 6 6 700 200 
C3 8 6 700 270 
C4 6 4 700 200 1 7 14 1 7 14 
C5 6 8 700 270 
C6 6 6 600 200 
C7 6 6 800 200 

3. 1 Gravity load design of flat plates 

The service dead load of the slab is assumed to be composed of the self-weight of the slab 

and a uniform partition weight of 1.0 kPa. The service live load is taken as 1.9 kPa and 1.0 

kPa for the floor and roof to represent residential buildings. The slab of each connection is 

designed for the gravity load composed of the dead and live loads using the direct design 

method of (A23.3-04, 2004). The layouts of the top and bottom slab reinforcements are 

shown in Fig. 2. The reinforcement used for each designed connection is given in Table 2. 
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Fig. 2 Reinforcement layout of a typical slab. 

Table 2: Top and bottom reinforcements of connections designed for gravity load only 

Connection 
L B L1 B1 

As1 A.2 As3 As4 Ass (m) (m) (m) (m) 

3-10M@200 10M@200 
l0M lOM@ l0M 

Cl 4 6 3 2 @250 250 @250 
mm mm 

mm mm mm 

3-15M@250 15M@250 
15M l0M@ l0M 

C2 6 6 4 3 @500 200 @250 
mm mm 

mm mm mm 

3-15M@170 15M@170 
15M 15M@ 15M 

C3 8 6 6 3 @370 300 @370 
mm mm 

mm mm mm 

3-10M@135 10M@135 
l0M l0M@ l0M 

C4 6 4 4 2 @250 250 @250 
mm mm 

mm mm mm 

3-15M@225 15M@225 
15M 15M@ 15M 

C5 6 8 4 3 @370 370 @370 
mm mm 

mm mm mm 

3-15M@245 15M@245 
15M lOM@ l0M 

C6 6 6 4 3 @500 195 @250 
mm mm 

mm mm mm 

3-15M@250 15M@250 
15M l0M@ l0M 

C7 6 6 4 3 @500 205 @250 
mm mm 

mm mm mm 
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3.2 Lateral load design of flat plates 

The slab-column connection of each configuration is modelled as an elastic 2D, Fig. 1 using 

the sectional properties recommended in (A23.3-04, 2004). The effective moment of inertia 

for the slabs, le was taken as 0.2 times the gross moment of inertia, lg. For the column, le was 

taken equal to ac le where ac is a factor to account for the effect of the column axial load, Ps 

and is given by Eq. (1). 

(1) 

Where, Ag = gross area of column section 

The lateral load-inter-storey drift curve of a typical concrete building designed according to 

current seismic standards is shown in Fig. 3. The behaviour is expected to be elastic until a 

yield load of Vy. This is followed by plastic deformations until reaching failure. The 

maximum inter-storey drift can be assumed to be 2.5% (NBCC 2010). Based on the equal 

displacement principle, Vy can be calculated based on the corresponding elastic load Ve 

( VY= "8/ E J. The importance factor IE, ductility factor Rd and over-strength factor Ro are 
Ri\ 

taken as 1, 1.5 and 1.3 (NBCC 2010). Service lateral loads corresponding to a drift of 2.5% in 

both directions are determined and used to design the slab. The reinforcement values are 

given in Table 3. 

3.3 Columns 

Square columns of dimensions 600, 700, and 800 mm reinforced with 16-25M, 16-30M, and 

16-25M bars, respectively, are assumed for all connections. 1 OM ties are used for all 
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columns. Their spacing is 375 mm for the 600 mm and 800 mm columns and 475 mm for the 

700 mm column. The strong column-weak slab requirement is satisfied for all connections. 

~ ----------------------------------~ ,,,,,,,. 
,,,,,, 

,,,,,, 
·-·-·-·-----------' 

.__ ______ ........_ __ Inter-storey drift(%) 

2.5 

Fig. 3 Lateral load-inter-storey drift curve of a typical concrete building. 

Table 3: Top and bottom reinforcements of connections designed for gravity and lateral loads 

Connection 
L B L1 B1 A.1 A.i A.3 As4 A.s (m) (m) (m) (m) 

Cl 4 6 3 2 
5-20M@135 20M@135 15M@500 15M@155 15M@ 

mm mm mm mm 500mm 

C2 6 6 4 3 
7-20M@125 20M@125 15M@500 15M@200 lOM@ 

mm mm mm mm 250mm 

C3 8 6 6 3 
9-20M@105 20M@105 15M@370 15M@215 15M@ 

mm mm mm mm 370mm 

C4 6 4 4 2 
5-20M@140 20M@140 15M@500 15M@210 15M@ 

mm mm mm mm 500mm 

C5 6 8 4 3 
9-20M@105 20M@105 15M@370 15M@155 15M@ 

mm mm mm mm 370mm 

C6 6 6 4 3 
7-20M@130 20M@130 15M@500 15M@205 lOM@ 

mm mm mm mm 250mm 

C7 6 6 4 3 
7-20M@120 20M@120 15M@500 15M@195 lOM@ 

mm mm mm mm 250mm 
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4. Analytical modelling and results 

SeismoStruct computer program (SeismoSoft 2007) is used to model each connection using 

the grillage method. A grid spacing of 250.0 mm was used for both 4x6 m and 6x6 m 

slabs. For 8x6 m slab, the grid spacing was increased to 333.3 mm. To predict the factored 

capacity, resistance factors for concrete and steel were taken as 0.65 and 0.85 (A23.3-04, 

2004). The concrete strength was also reduced by a factor of 0.9 to account for the 

differences between the in-place strength and the strength of standard cylinder (A23.3-04, 

2004). Gravity loads were first applied and then static pushover analysis was performed until 

failure. For all of the considered cases, the developed shear forces were lower than the slab 

shear capacity calculated using the general method of A23.3-04 (2004). Flexural failure 

initiated when the concrete strain reached a concrete strain of 0.0035 (A23.3-04, 2004). This 

failure mechanism was expected as modem standards ensure that a brittle shear failure will 

not occur. 

The nominal and factored moments ( Mn and Mr) at which the slabs failed are summarized in 

Table 4. Nominal and factored effective slab widths for each configuration were calculated 

by equalizing the capacity of the slab section and the failure moment. The corresponding 

effective slab width factors ( an and ar) are calculated as the ratios of effective slab widths to 

the corresponding bay widths. Their values are given in Table 4 for gravity load designed 

frames (GL) and lateral load designed frames, moment resisting frames (MRF). For the 

considered cases, an and ar are found to be varying from 0.087 to 0.353 and from 0.082 to 

0.318, respectively. 
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Table 4: Nominal and factored ultimate moments (Mn and Mr) and effective slab width 
factors (an anda,) of different connections. 

p P, 
Connection - - Flat plate system Mn(kN.m) an M,(kN.m) a, 

R pfl 

1 1 
GL 82.72 0.312 62.25 0.278 

MRF 124.35 0.110 97.12 0.105 

Cl 7 7 
GL 71.47 0.270 53.25 0.238 

MRF 111.22 0.098 87.00 0.094 

14 14 
GL 60.22 0.227 43.83 0.196 

MRF 98.85 0.087 75.75 0.082 

1 1 
GL 111.33 0.277 87.56 0.259 

MRF 143.48 0.145 113.81 0.141 

C2 7 7 GL 96.26 0.239 75.56 0.223 
MRF 123.98 0.125 97.31 0.121 

14 14 GL 81.29 0.202 63.56 0.187 
MRF 104 4R o 1n, swsq o 1nn 

1 1 GL 286.93 0.293 226.78 0.275 
MRF 378.81 0.188 307.41 0.184 

C3 7 7 
GL 264.43 0.270 206.16 0.250 

MRF 345.06 0.171 277.41 0.166 

14 14 
GL 240.06 0.245 188.16 0.228 

MRF 315.06 0.156 249.28 0.149 

1 1 
GL 102.15 0.353 77.63 0.318 

MRF 147.15 0.186 116.63 0.179 

C4 7 7 
GL 90.15 0.311 68.25 0.279 

MRF 131.40 0.165 103.88 0.159 

14 14 
GL 78.52 0.271 59.25 0.242 

MRF 115.65 0.146 90.38 0.139 

1 1 
GL 253.17 0.22 193.99 0.204 

MRF 335.67 0.130 267.12 0.125 

cs 7 7 
GL 230.67 0.205 176.18 0.185 

MRF 307.54 0.119 242.74 0.114 

14 14 
GL 206.29 0.183 156.87 0.165 

MRF 277.54 0.107 216.49 0.101 

1 1 
GL 111.98 0.278 87.56 0.259 

MRF 143.48 0.145 113.81 0.141 

7 7 
GL 96.74 0.240 75.93 0.225 

C6 MRF 123.98 0.125 98.06 0.122 

14 14 
GL 82.67 0.205 64.31 0.190 

MRF 105.23 0.106 81.56 0.101 

1 1 
GL 111.98 0.278 87.56 0.259 

MRF 143.48 0.145 113.81 0.141 

7 7 
GL 95.48 0.237 75.18 0.222 

C7 MRF 123.23 0.125 96.56 0.120 

14 14 
GL 80.97 0.201 62.52 0.185 

MRF 102.98 0.104 79.31 0.098 
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5. Discussion of analytical results 

Variations of nominal and factored effective slab width factors with span length, bay width, 

and column dimension at different nominal and factored axial load ratios for GL or MRF flat 

plates are shown in Figs. 4-6. These curves show that the nominal and factored effective slab 

width factors decrease as the axial load of column increases. Increasing the column axial load 

increases column stiffness, which reduces column rotation and limits the width of the slab 

contributing its capacity. an and ar for MRF flat plates are less than those for GL flat plates. 

This is likely due to the higher reinforcement ratio for MRF as compared to GL flat plates, 

which decreases the slab width required to achieve the flexural capacity. 

Fig. 7 shows that an vary from 0.202 to 0.312 for GL flat plates and from 0.087 to 0.188 for 

MRF flat plates as the span length changes from 4 m to 8 m. It also shows that the 

corresponding values of ar vary from 0.187 to 0.278 for GL flat plates and 0.082 to 0.184 for 

MRF flat plates. an and ar did not change significantly for GL flat plates. This is likely due to 

the reinforcement ratio, which is governed by gravity loads. On the other hand, an and ar 

values for MRF flat plates increase with increase in span. This is likely due to the 3D 

behaviour of flat plate which allows a bigger width to contribute for bigger spans if adequate 

reinforcement is provided. 

Fig. 5 shows that an vary from 0.353 to 0.183 for GL flat plates and 0.186 to 0.105 for MRF 

flat plates as the bay width changes from 4 m to 8 m. It also shows that the corresponding 

values of ar vary from 0.318 to 0.165 for GL flat plates and 0.179 to 0.100 for MRF flat 

plates. an and ar for GL and MRF flat plates decrease with the increase in bay width. 

Increasing bay width increases gravity moments which eventually increases design 

reinforcements and decreases an and ar. 
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Fig. 6 shows that O.n vary from 0.278 to 0.201 for GL flat plates and 0.145 to 0.104 for MRF 

flat plates as the column dimension changes from 600 mm to 800 mm. It also shows that the 

corresponding values of o., vary from 0.259 to 0.185 for GL flat plates and from 0.141 to 

0.098 for MRF flat plates. Column dimensions were found to have minor effect on O.n and o.,. 

This is likely due to the small variation of column dimensions with respect to slab 

dimensions. 

o., ~---------~ ~--~ 
- P/Pl • l , 

GL 

j 0.4 

" ! 0.3 

"' t ,, ----- --------:: ______ ::-----
.. 
·Ii f 0.1 

Span length (m) 

a) Nominal capacity 

- - P/P1 • 7, 
OL 

---• P/Pl • 14, 
GL 

-P/J>l • l , 
MRF 

---PIP1 • 7, 
MRF 

-------P/Pl • 14, 
MRF 

0.5 ~------------,~------, 
S - PWfl • l , 
u ~ 

" fa 0.4 
·;; 

j 0.3 

·i 
'=s 0.2 

~ 
" ~ 0. 1 

--------::= ---
~ 

Span length (m) 

b) Factored capacity 

- - P!l'Pfl = 7, 
GL 

---- Pt7Pfl • 14, 
GL 

- Pti'Pfl • l , 
MRF 

---PWfl • 7, 
MRF 

- - --- -- pfi'pfl • 14, 
MRF 

Fig. 4 Variation of effective slab width factor with span length. 
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GL 

---•PIPl-14, 
GL 

- P/Pl::l, 
MRF 

--- PIP1=7, 
MRF 

····· ··PIPl - l4, 
MRF 

OJ ~---------~~------, 

0.4 • " " ~ 1 OJ 

~ ---=-::~ ~ ~----.. ::.::.:::.: 
---=.:.::.~ 

Bay•idtb. (m) 

b) Factored capacity 

- ptpf\=l , 
GL 

- - PLPil•7, 
GL 

----~=14, 
GL 
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- - - PLPi1 • 7, 

""' 
····· •• ptpf\;14, 

,ru 

Fig. 5 Variation of effective slab width factor with bay width. 
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o., ~--------~ ~--~ 

0.4 

0.3 

0.2 

0.1 

- PIPl=l, 
GL 

- - PIPJ = 7, 
GL 

- - -•PIPI: 14, 
GL 
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MRF 

-- - PIPl • 7, 
MRF 

------ - PIP!= 14, 
MRF 

0 +---~-~--~------< ~--~ 
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0.l ~--------~ ~~-==pt)p=fl-= 1,....,, 

0.4 

0.3 

0.2 

0.1 

l00 600 700 800 

Column dimension (mm) 

b) Factored capacity 

900 

GL 
- - PllPfl=7, 

GL 
----PllPfl = 14, 

GL 
- PllPfl = l , 

MRF 
- - - pt)pfl=7, 

MRF 
- ------ PllPfl = 14, 

MRF 

Fig. 6 Variation of effective slab width factor with column dimensions. 

6. Effective Slab Width 

Using the calculated effective slab width factors, two expressions are developed to estimate 

the effective width factor for GL and MRF. The effective width factor is found to be 

proportional to a linear function of the axial load of column ( ; ) , a parabolic function of the 

span length (L), and a parabolic function of the bay width (8). This led to the following 

express10n. 

(2) 

The values of A1 through A8 were determined usmg regression analysis such that the 

difference between the analytical values for a and the values determined from Eq. (4) is 

minimized. The expressions to estimate O.n for GL and MRF flat plates are given by Eqs. (3) 

and (4), respectively. o.rcan be estimated by multiplying O.n by 0.919 and 0.969 for GL and 

MRF flat plates, respectively. 
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a, -10-" (-180 ; + 10150 )( 501' -690L +4660 ){ 808' -2430B+ 22720) (3) 

a, -10-"(-110; + 10130 )(101' + 70L+650)(2108'-35708+23360) (4) 

Where L = span length (m) and B = bay width (m) 

The predictions ofEqs. (3) and (4) are compared with the analytical results in Tables 5 and 6, 

respectively. The comparisons are also shown in Fig. 7. The predictions have minor deviation 

from the analytical results ( deviation of ±0.022 ). 

Table 5: Comparison of the predicted values ofEq. (3) and the analytical results 

p P, 
Connection - - an Eq. Deviation ar Eq. 3 Deviation 

Pi P,1 
1 1 0.312 0.311 0.001 0.278 0.286 -0.008 

Cl 7 7 0.270 0.274 -0.004 0.238 0.252 -0.014 
14 14 0.227 0.237 -0.010 0.196 0.218 -0.022 
1 1 0.277 0.277 0.000 0.259 0.255 0.004 

C2 7 7 0.239 0.244 -0.005 0.223 0.224 -0.001 
14 14 0.202 0.211 -0.009 0.187 0.194 -0.007 
1 1 0.293 0.293 0.000 0.275 0.269 0.006 

C3 7 7 0.270 0.257 0.013 0.250 0.236 0.014 
14 14 0.245 0.223 0.022 0.228 0.205 0.023 
1 1 0.353 0.353 0.000 0.318 0.324 -0.006 

C4 7 7 0.311 0.310 0.001 0.279 0.285 -0.006 
14 14 0.271 0.268 0.003 0.242 0.246 -0.004 
1 1 0.220 0.220 0.000 0.204 0.202 0.002 

C5 7 7 0.205 0.193 0.012 0.185 0.178 0.007 
14 14 0.183 0.167 0.016 0.165 0.153 0.012 
1 1 0.278 0.278 0.000 0.259 0.255 0.004 

C6 7 7 0.240 0.244 -0.004 0.225 0.224 0.001 
14 14 0.205 0.211 -0.006 0.190 0.194 -0.004 
1 1 0.278 0.278 0.000 0.259 0.255 0.004 

C7 7 7 0.237 0.244 -0.007 0.222 0.224 -0.002 
14 14 0.201 0.211 -0.010 0.185 0.194 -0.009 
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Table 6: Comparison of the predicted values ofEq. (4) and the analytical results 

p P, 
Connection - - an 

Pi P,1 
1 1 0.110 

Cl 7 7 0.098 
14 14 0.087 
1 1 0.145 

C2 7 7 0.125 
14 14 0.105 
1 1 0.188 

C3 7 7 0.171 
14 14 0.156 
1 1 0.186 

C4 7 7 0.165 
14 14 0.146 
1 1 0.130 

cs 7 7 0.119 
14 14 0.107 
1 1 0.145 

C6 7 7 0.125 
14 14 0.106 
1 1 0.145 

C7 7 7 0.125 
14 14 0.104 
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Fig. 7 Comparison of the predictions of the proposed equations and the analytical results. 
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To further validate the proposed equations, the predictions of Eq. (3) are used to calculate the 

nominal capacity ( Mu, Eq.) of ten connections that were experimentally tested by other 

researchers. Comparison between the values of Mu, Eq. and the experimentally observed 

ultimate moments are shown in Table 7. A maximum deviation of 10% was observed. 

Table 7: Comparison of the predicted values ofEq. (3) and experimental results by others 

Span Bay p 
Eq. Mu,Eq. Mu,e Deviation 

Experiments Specimens length width -
(m) (m) Pi (3) (kN.m) (kN.m) (%) 

Pan and 
3 3.65 3.65 0.417 49 52.77 7 

Moehle (1988) 

81 32.21 33.33 3 
Robertson and 1 

2.89 1.98 0.560 
32.35 32.37 0 

Durrani (1990) 2C 32.35 33.10 2 
5SO 1 32.35 33.39 3 

(Farhey et al. 
1 2.68 2.68 0.530 16.89 16.50 -2 

1993) 
S2 17.43 19.37 10 

Morrison and S3 
1.82 1.82 0.660 

21.66 20.56 -5 
Sozen (1981) S4 16.38 17.74 8 

S5 17.41 18.75 7 

7. Conclusions 

In this paper, the use of grillage analysis to predict the nonlinear seismic behaviour of flat 

plates allowed conducting an extensive parametric study to evaluate the effective slab width 

required to calculate the nominal and factored resisting moment for different spans, bay 

widths, column dimensions, and column axial loads. Two sets of flat plate frames are 

designed. They represent flat plate structures designed for gravity loads and for gravity and 

horizontal loads. Each structure is modelled using grillage analysis and is subjected to an 

increasing lateral load. The resisting moment is defined using suitable failure criteria and then 

used to calculate the effective slab width. The nominal and factored effective slab width 
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factors are found to increase with the increase of flat plate span and decrease with the 

increase of bay width. Column dimensions are found to have minor effects on their values. 

They are also found to decrease as the axial loads of column increase. GL flat plates had 

higher values as compared to MRF flat plates. Expressions for nominal and factored effective 

slab width factors are proposed. Their predictions are validated using available experimental 

results and found to be adequate. Nominal and factored effective slab width factors calculated 

in this study are applicable for buildings designed to modem design standards and for the 

range of parameters considered. Care should be taken when using them for other cases. 
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