196 research outputs found
Electrothermal Convection in Dielectric Maxwellian Nanofluid Layer
The influence of rheological behavior on the natural convection in a dielectric nanofluid with vertical AC electric field is investigated. The rheology of the nanofluid is described by Maxwell model for calculating the shear stresses from the velocity gradients. The employed model introduces the combined effects of movement of the molecules of the fluid striking the nanoparticles, thermophoresis and electrophoresis due to embedded nanoparticles. The exact solutions of the eigen model value problem for stress-free bounding surfaces are obtained analytically using one term Galerkin method to find the thermal Rayleigh number for onset of both non-oscillatory (stationary) and oscillatory motions. It is found that the oscillatory modes are possible for both bottom and top-heavy distributions of nanoparticles. It is observed that the value of critical Rayleigh number is decreased by a substantial amount with the increase in electric field intensity, whereas role of viscoelasticity (time relaxation parameter) is to hasten the occurence of oscillatory modes appreciably. The thermal Prandtl number is found to delay the occurence of oscillatory modes. These results are also shown graphically
Genome-wide analysis of regions similar to promoters of histone genes
Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes. Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters. Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that participate in regulation of histone and histone-coregulated gene transcription initiation. While these hypotheses still remain to be verified, we believe that these form a useful resource for researchers to further explore regulation of human histone genes and human genome. It is worthwhile to note that the regulatory regions of the human genome remain largely un-annotated even today and this study is an attempt to supplement our understanding of histone regulatory regions.Statistic
Cosmid-derived markers anchoring the bovine genetic map to the physical map
The mapping strategy for the bovine genome described in this paper uses large insert clones as a tool for physical mapping and as a source of highly polymorphic microsatellites for genetic typing, and was one objective of the BovMap Project funded by the European Union (UE). Eight-three cosmid and phage clones were characterized and used to physically anchor the linkage groups defining all the bovine autosomes and the X Chromosome (Chr). By combining physical and genetic mapping, clones described in this paper have led to the identification of the linkage groups corresponding to Chr 9, 12, 16, and 25. In addition, anchored loci from this study were used to orient the linkage groups corresponding to Chr 3, 7, 8, 9, 13, 16, 18, 19, and 28 as identified in previously published maps. Comparison of the estimated size of the physical and linkage maps suggests that the genetic length of the bovine genome may be around 4000 c
A critical assessment of methods for the intrinsic analysis of liquid interfaces. 1. surface site distributions
Substantial progress in our understanding of interfacial structure and dynamics has stemmed from the recent development of algorithms that allow for an intrinsic analysis of fluid interfaces. These work by identifying the instantaneous location of the interface, at the atomic level, for each molecular configuration and then computing properties relative to this location. Such a procedure eliminates the broadening of the interface caused by capillary waves and reveals the underlying features of the system. However, a precise definition of which molecules actually belong to the interfacial layer is difficult to achieve in practice. Furthermore, it is not known if the different intrinsic analysis methods are consistent with each other and yield similar results for the interfacial properties. In this paper, we carry out a systematic and detailed comparison of the available methods for intrinsic analysis of fluid interfaces, based on a molecular dynamics simulation of the interface between liquid water and carbon tetrachloride. We critically assess the advantages and shortcomings of each method, based on reliability, robustness, and speed of computation, and establish consistent criteria for determining which molecules belong to the surface layer. We believe this will significantly contribute to make intrinsic analysis methods widely and routinely applicable to interfacial systems
Using Unsupervised Patterns to Extract Gene Regulation Relationships for Network Construction
BACKGROUND: The gene expression is usually described in the literature as a transcription factor X that regulates the target gene Y. Previously, some studies discovered gene regulations by using information from the biomedical literature and most of them require effort of human annotators to build the training dataset. Moreover, the large amount of textual knowledge recorded in the biomedical literature grows very rapidly, and the creation of manual patterns from literatures becomes more difficult. There is an increasing need to automate the process of establishing patterns. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we describe an unsupervised pattern generation method called AutoPat. It is a gene expression mining system that can generate unsupervised patterns automatically from a given set of seed patterns. The high scalability and low maintenance cost of the unsupervised patterns could help our system to extract gene expression from PubMed abstracts more precisely and effectively. CONCLUSIONS/SIGNIFICANCE: Experiments on several regulators show reasonable precision and recall rates which validate AutoPat's practical applicability. The conducted regulation networks could also be built precisely and effectively. The system in this study is available at http://ikmbio.csie.ncku.edu.tw/AutoPat/
A critical assessment of methods for the intrinsic analysis of liquid interfaces: 2. density profiles
Substantial improvements in the molecular level understanding of fluid interfaces have recently been achieved by recognizing the importance of detecting the intrinsic surface of the coexisting condensed phases in computer simulations (i.e., after the removal of corrugations caused by capillary waves) and by developing several methods for identifying the molecules that are indeed located at the boundary of the two phases. In our previous paper [J. Phys. Chem. C 2010, 114, 11169], we critically compared those methods in terms of reliability, robustness, and computation speed. Once the intrinsic surface of a given phase is detected, various profiles, such as the density profiles of the components, can be calculated relative to this intrinsic surface rather than to the macroscopically planar Gibbs dividing surface. As a continuation of our previous study, here we present a detailed and critical comparison of various methods that can be used to calculate intrinsic density profiles once the full set of truly interfacial molecules has been identified. Two of the methods, the Fourier function and the Voronoi tessellation, are already described in the literature; two other methods, the covering surface and the triangular interpolation, are newly proposed algorithms; one method, the modified grid-based intrinsic profile (GIP) method, is an improvement over an existing procedure. The different methods are again compared in terms of accuracy and computational cost. On the basis of this comparison, we propose a fast and accurate protocol to be routinely used for intrinsic surface analyses in computer simulations
A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans
In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies
Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study
Molecular dynamics simulations of the liquid-vapor interface of acetone-water mixtures of different compositions, covering the entire composition range have been performed on the canonical (N, V, T) ensemble at 298 K, using a model combination that excellently describes the mixing properties of these compounds. The properties of the intrinsic liquid surfaces have been analyzed in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. Thus, the composition, width, roughness, and separation of the subsurface molecular layers, as well as self-association, orientation, and dynamics of exchange with the bulk phase of the surface molecules have been analyzed in detail. Our results show that acetone molecules are strongly adsorbed at the liquid surface, and this adsorption extends to several molecular layers. Like molecules in the surface layer are found to form relatively large lateral self-associates. The effect of the vicinity of the vapor phase on a number of properties of the liquid phase vanishes beyond the first molecular layer, with the second subsurface layer already part of the bulk liquid phase in these respects. The orientational preferences of the surface molecules are governed primarily by the dipole-dipole interaction of the neighboring acetone molecules, and hydrogen bonding interaction of the neighboring acetone-water pairs. (Figure Presented). © 2015 American Chemical Society
Floating Patches of HCN at the Surface of Their Aqueous Solutions - Can They Make "HCN World" Plausible?
The liquid/vapor interface of the aqueous solutions of HCN of different concentrations has been investigated using molecular dynamics simulation and intrinsic surface analysis. Although HCN is fully miscible with water, strong interfacial adsorption of HCN is observed at the surface of its aqueous solutions, and, at the liquid surface, the HCN molecules tend to be located even at the outer edge of the surface layer. It turns out that in dilute systems the HCN concentration can be about an order of magnitude larger in the surface layer than in the bulk liquid phase. Furthermore, HCN molecules show a strong lateral self-association behavior at the liquid surface, forming thus floating HCN patches at the surface of their aqueous solutions. Moreover, HCN molecules are staying, on average, an order of magnitude longer at the liquid surface than water molecules, and this behavior is more pronounced at smaller HCN concentrations. Because of this enhanced dynamical stability, the floating HCN patches can provide excellent spots for polymerization of HCN, which can be the key step in the prebiotic synthesis of partially water-soluble adenine. All of these findings make the hypothesis of "HCN world" more plausible
Intrinsic structure and dynamics of the water/nitrobenzene interface
In this paper we present results of a detailed and systematic molecular dynamics study of the water/nitrobenzene interface. Using a simple procedure to eliminate fluctuations of the interface position, we are able to obtain true intrinsic profiles for several properties (density, hydrogen bonds, molecular orientation, etc.) in the direction perpendicular to the interfacial plane. Our results show that both water and organic inter-facial molecules form a tightly packed layer oriented parallel to the interface, with reduced mobility in the perpendicular direction. Beyond this layer, water quickly restores its bulk structure, while nitrobenzene exhibits structural anisotropies that extend further into the bulk region: Water molecules that protrude farthest into the organic phase point one hydrogen atom in the direction perpendicular to the interface, forming a hydrogen bond with a nitrobenzene oxygen. By fitting both the global and the intrinsic density profiles, we obtain estimates for the total and intrinsic interface widths, respectively. These are combined with capillary wave theory to produce a self-consistent method for the calculation of the inter-facial tension. Values calculated using this method are in very good agreement with direct calculations from the components of the pressure tensor
- …