8,805 research outputs found

    Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

    Full text link
    The large scale properties of spatiotemporal chaos in the 2d Kuramoto-Sivashinsky equation are studied using an explicit coarse graining scheme. A set of intermediate equations are obtained. They describe interactions between the small scale (e.g., cellular) structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the KPZ universality class.Comment: 4 pages, 3 figure

    A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs

    Full text link
    We argue that there is a new liquid phase in the two-dimensional electron system in Si MOSFETs at low enough electron densities. The recently observed metal-insulator transition results as a crossover from the percolation transition of the liquid phase through the disorder landscape in the system below the liquid-gas critical temperature. The consequences of our theory are discussed for variety of physical properties relevant to the recent experiments.Comment: 12 pages of RevTeX with 3 postscript figure

    Hydraulic Modeling of a Mixed Water Level Control Hydromechanical Gate

    Get PDF
    This article describes the hydraulic behavior of a mixed water level control hydromechanical gate present in several irrigation canals. The automatic gate is termed "mixed" because it can hold either the upstream water level or the downstream water level constant according to the flow conditions. Such a complex behavior is obtained through a series of side tanks linked by orifices and weirs. No energy supply is needed in this regulation process. The mixed flow gate is analyzed and a mathematical model for its function is proposed, assuming the system is at equilibrium. The goal of the modeling was to better understand the mixed gate function and to help adjust their characteristics in the field or in a design process. The proposed model is analyzed and evaluated using real data collected on a canal in the south of France. The results show the ability of the model to reproduce the function of this complex hydromechanical system. The mathematical model is also implemented in software dedicated to hydraulic modeling of irrigation canals, which can be used to design and evaluate management strategies

    Charge sensing in carbon nanotube quantum dots on microsecond timescales

    Full text link
    We report fast, simultaneous charge sensing and transport measurements of gate-defined carbon nanotube quantum dots. Aluminum radio frequency single electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide single-electron charge sensing on microsecond timescales. Simultaneously, rf reflectometry allows fast measurement of transport through the nanotube dot. Charge stability diagrams for the nanotube dot in the Coulomb blockade regime show extended Coulomb diamonds into the high-bias regime, as well as even-odd filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure

    Spaceborne Processor Array

    Get PDF
    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer

    Metallothionein 1E mRNA is highly expressed in oestrogen receptor-negative human invasive ductal breast cancer

    Get PDF
    Metallothioneins (MTs), a group of ubiquitous metalloproteins, comprise isoforms encoded by ten functional genes in humans. Different MT isoforms possibly play different functional roles during development or under various physiological conditions. The MT-1E isoform mRNA has been recently shown to be differentially expressed in oestrogen receptor (OR)-positive and OR-negative breast cancer cell lines. In this study, we evaluated MT-1E mRNA expression via semi-quantitative RT-PCR in 51 primary invasive ductal breast cancer tissues, concurrently with OR-positive and progesterone receptor (PR)-positive MCF7 cells, OR-negative and PR-negative MDA-MB-231 cells and PR-transfected MDA-MB-231 breast cancer cells (ABC28). We demonstrated significantly higher MT-1E mRNA expression in OR-negative compared with OR-positive breast cancer tissues (P= 0.026). MCF7 cells lacked MT-1E mRNA expression, while both OR- and PR-negative MDA-MD-231 cells exhibited a high level of MT-1E mRNA expression. The level of MT-1E mRNA expression in progesterone-treated and -untreated ABC28 cells remained similar as the parental cell line MDA-MB-231-C2 cells. The results suggest that MT-1E may have specific and functional roles in OR-negative invasive ductal breast cancers, possibly mediated via effector genes downstream of the oestrogen receptor, but not through the PR pathway. © 2000 Cancer Research Campaig

    The Entropy for General Extremal Black Holes

    Get PDF
    We use the Kerr/CFT correspondence to calculate the entropy for all known extremal stationary and axisymmetric black holes. This is done with the help of two ansatzs that are general enough to cover all such known solutions. Considering only the contribution from the Einstein-Hilbert action to the central charge(s), we find that the entropy obtained by using Cardy's formula exactly matches with the Bekenstein-Hawking entropy.Comment: Minor corrections, section 5 refined, references added

    On perturbations of Dirac operators with variable magnetic field of constant direction

    Full text link
    We carry out the spectral analysis of matrix valued perturbations of 3-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the pertubations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Various situations, for example when the magnetic field is constant, periodic or diverging at infinity, are covered. The importance of an internal-type operator (a 2-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods.Comment: 12 page

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds

    Ricci Flow Gravity

    Get PDF
    A theory of gravitation is proposed, modeled after the notion of a Ricci flow. In addition to the metric an independent volume enters as a fundamental geometric structure. Einstein gravity is included as a limiting case. Despite being a scalar-tensor theory the coupling to matter is different from Jordan-Brans-Dicke gravity. In particular there is no adjustable coupling constant. For the solar system the effects of Ricci flow gravity cannot be distinguished from Einstein gravity and therefore it passes all classical tests. However for cosmology significant deviations from standard Einstein cosmology will appear.Comment: 15 pages. V2: improved presentation, in particular Jordan vs. Brans-Dicke and on viability. Added section on physical interpretation. V3: more references. Reworked to agree with published versio
    corecore