28,272 research outputs found

    Neuron analysis of visual perception

    Get PDF
    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed

    How To Attain Maximum Profit In Minority Game?

    Full text link
    What is the physical origin of player cooperation in minority game? And how to obtain maximum global wealth in minority game? We answer the above questions by studying a variant of minority game from which players choose among NcN_c alternatives according to strategies picked from a restricted set of strategy space. Our numerical experiment concludes that player cooperation is the result of a suitable size of sampling in the available strategy space. Hence, the overall performance of the game can be improved by suitably adjusting the strategy space size.Comment: 4 pages in revtex 4 styl

    Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    Get PDF
    In the absence of external reference position information (e.g. GNSS) SLAM has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the ICP algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue indoors); however, no assumptions are required for the general motion of the sensor.Comment: ISPRS Workshop Indoor 3D 201

    Minority Game With Peer Pressure

    Full text link
    To study the interplay between global market choice and local peer pressure, we construct a minority-game-like econophysical model. In this so-called networked minority game model, every selfish player uses both the historical minority choice of the population and the historical choice of one's neighbors in an unbiased manner to make decision. Results of numerical simulation show that the level of cooperation in the networked minority game differs remarkably from the original minority game as well as the prediction of the crowd-anticrowd theory. We argue that the deviation from the crowd-anticrowd theory is due to the negligence of the effect of a four point correlation function in the effective Hamiltonian of the system.Comment: 10 pages, 3 figures in revtex 4.

    Evolution of isolated turbulent trailing vortices

    Get PDF
    In this work, the temporal evolution of a low swirl-number turbulent Batchelor vortex is studied using pseudospectral direct numerical simulations. The solution of the governing equations in the vorticity-velocity form allows for accurate application of boundary conditions. The physics of the evolution is investigated with an emphasis on the mechanisms that influence the transport of axial and angular momentum. Excitation of normal mode instabilities gives rise to coherent large scale helical structures inside the vortical core. The radial growth of these helical structures and the action of axial shear and differential rotation results in the creation of a polarized vortex layer. This vortex layer evolves into a series of hairpin-shaped structures that subsequently breakdown into elongated fine scale vortices. Ultimately, the radially outward propagation of these structures results in the relaxation of the flow towards a stable high-swirl configuration. Two conserved quantities, based on the deviation from the laminar solution, are derived and these prove to be useful in characterizing the polarized vortex layer and enhancing the understanding of the transport process. The generation and evolution of the Reynolds stresses is also addressed
    corecore