4,601 research outputs found
Low frequency creep in CoNiFe films
The results of an investigation of domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films 1500A to 2000A thick are presented. The results are consistent with those of comparable NiFe films in spite of large differences in film properties. The present low frequency creep data together with previously published results in this and other laboratories can be accounted for by a model which requires that the wall structure change usually associated with low frequency creep be predominately a gyromagnetic process. The correctness of this model is reinforced by the observation that the wall coercive force, the planar wall mobility, and the occurrence of an abrupt wall structure change are the only properties closely correlated to the creep displacement characteristics of a planar wall in low dispersion films
Purification and characterization of a protein-tyrosine kinase encoded by the Abelson murine leukemia virus
Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein- serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+- calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond
Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni
Campylobacter jejuni is one of the most successful food-borne human pathogens. Here we use electron cryotomography to explore the ultrastructure of C. jejuni cells in logarithmically growing cultures. This provides the first look at this pathogen in a near-native state at macromolecular resolution (~5 nm). We find a surprisingly complex polar architecture that includes ribosome exclusion zones, polyphosphate storage granules, extensive collar-shaped chemoreceptor arrays, and elaborate flagellar motors
Simulations of mid infrared emission of InAsN semiconductors
This paper delivers an approximation to the complex many body problem of luminescence in semiconductors to the case of mid infrared luminescence of dilute nitrides. The results are compared with recent experimental data for InAsN semiconductors
Anisotropy and nonlinearity in superlattices
This paper uses analytical expressions for the nonlinear optical absorption of superlattices by treating them as anisotropic media. The controllable system shows that the nonlinearities increase with anisotropy suggesting that strongly anisotropic materials such as those used for solar cells may also be useful for nonlinear optical applications
Complete characterization of convergence to equilibrium for an inelastic Kac model
Pulvirenti and Toscani introduced an equation which extends the Kac
caricature of a Maxwellian gas to inelastic particles. We show that the
probability distribution, solution of the relative Cauchy problem, converges
weakly to a probability distribution if and only if the symmetrized initial
distribution belongs to the standard domain of attraction of a symmetric stable
law, whose index is determined by the so-called degree of
inelasticity, , of the particles: . This result is
then used: (1) To state that the class of all stationary solutions coincides
with that of all symmetric stable laws with index . (2) To determine
the solution of a well-known stochastic functional equation in the absence of
extra-conditions usually adopted
Graviton 1-loop partition function for 3-dimensional massive gravity
The graviton 1-loop partition function in Euclidean topologically massive
gravity (TMG) is calculated using heat kernel techniques. The partition
function does not factorize holomorphically, and at the chiral point it has the
structure expected from a logarithmic conformal field theory. This gives strong
evidence for the proposal that the dual conformal field theory to TMG at the
chiral point is indeed logarithmic. We also generalize our results to new
massive gravity.Comment: 19 pages, v2: major revision, considerably stronger conclusions,
added comparison with LCFT partition function, confirmation of LCFT
conjecture, added autho
Robust Inference of Trees
This paper is concerned with the reliable inference of optimal
tree-approximations to the dependency structure of an unknown distribution
generating data. The traditional approach to the problem measures the
dependency strength between random variables by the index called mutual
information. In this paper reliability is achieved by Walley's imprecise
Dirichlet model, which generalizes Bayesian learning with Dirichlet priors.
Adopting the imprecise Dirichlet model results in posterior interval
expectation for mutual information, and in a set of plausible trees consistent
with the data. Reliable inference about the actual tree is achieved by focusing
on the substructure common to all the plausible trees. We develop an exact
algorithm that infers the substructure in time O(m^4), m being the number of
random variables. The new algorithm is applied to a set of data sampled from a
known distribution. The method is shown to reliably infer edges of the actual
tree even when the data are very scarce, unlike the traditional approach.
Finally, we provide lower and upper credibility limits for mutual information
under the imprecise Dirichlet model. These enable the previous developments to
be extended to a full inferential method for trees.Comment: 26 pages, 7 figure
Recommended from our members
Pressure-induced suppression of ferromagnetism in the itinerant ferromagnet LaCrSb3
We have performed an extensive pressure-dependent structural, spectroscopic, and electrical transport study of LaCrSb3. The ferromagnetic phase (TC=120 K at p = 0 GPa) is fully suppressed by p = 26.5 GPa and the Cr moment decreases steadily with increasing pressure. The unit-cell volume decreases smoothly up to p = 55 GPa. We find that the bulk modulus and suppression of the magnetism are in good agreement with theoretical predictions, but the Cr moment decreases smoothly with pressure, in contrast to steplike drops predicted by theory. The ferromagnetic ordering temperature appears to be driven by the Cr moment
Recommended from our members
Tracking Changes of Hidden Food: Spatial Pattern Learning in Two Macaw Species
Food availability may vary spatially and temporally within an environment. Efficiency in locating alternative food sources using spatial information (e.g., distribution patterns) may vary according to a species’ diet and habitat specialisation. Hypothetically, more generalist species would learn faster than more specialist species due to being more explorative when changes occur. We tested this hypothesis in two closely related macaw species, differing in their degree of diet and habitat specialisation; the more generalist Great Green Macaw and the more specialist Blue-throated Macaw. We examined their spatial pattern learning performance under predictable temporal and spatial change, using a ‘poke box’ that contained hidden food placed within wells. Each week, the rewarded wells formed two patterns (A and B), which were changed on a mid-week schedule. We found that the two patterns varied in their difficulty. We also found that the more generalist Great Green Macaws took fewer trials to learn the easier pattern and made more mean correct responses in the difficult pattern than the more specialist Blue-throated Macaws, thus supporting our hypothesis. The better learning performance of the Great Green Macaws may be explained by more exploration and trading-off accuracy for speed. These results suggest how variation in diet and habitat specialisation may relate to a species’ ability to adapt to spatial variation in food availability.</jats:p
- …