738 research outputs found

    Screening families of patients with premature coronary heart disease to identify avoidable cardiovascular risk: a cross-sectional study of family members and a general population comparison group

    Get PDF
    <b>Background:</b> Primary prevention should be targeted at individuals with high global cardiovascular risk, but research is lacking on how best to identify such individuals in the general population. Family history is a good proxy measure of global risk and may provide an efficient mechanism for identifying high risk individuals. The aim was to test the feasibility of using patients with premature cardiovascular disease to recruit family members as a means of identifying and screening high-risk individuals. <b>Findings:</b> We recruited family members of 50 patients attending a cardiology clinic for premature coronary heart disease (CHD). We compared their cardiovascular risk with a general population control group, and determined their perception of their risk and current level of screening. 103 (36%) family members attended screening (27 siblings, 48 adult offspring and 28 partners). Five (5%) had prevalent CHD. A significantly higher percentage had an ASSIGN risk score >20% compared with the general population (13% versus 2%, p < 0.001). Only 37% of family members were aware they were at increased risk and only 50% had had their blood pressure and serum cholesterol level checked in the previous three years. <b>Conclusions:</b> Patients attending hospital for premature CHD provide a mechanism to contact family members and this can identify individuals with a high global risk who are not currently screened

    A Variational Method in Out of Equilibrium Physical Systems

    Full text link
    A variational principle is further developed for out of equilibrium dynamical systems by using the concept of maximum entropy. With this new formulation it is obtained a set of two first-order differential equations, revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. In particular, it is obtained an extended equation of motion for a rotating dynamical system, from where it emerges a kind of topological torsion current of the form ϵijkAjωk\epsilon_{ijk} A_j \omega_k, with AjA_j and ωk\omega_k denoting components of the vector potential (gravitational or/and electromagnetic) and ω\omega is the angular velocity of the accelerated frame. In addition, it is derived a special form of Umov-Poynting's theorem for rotating gravito-electromagnetic systems, and obtained a general condition of equilibrium for a rotating plasma. The variational method is then applied to clarify the working mechanism of some particular devices, such as the Bennett pinch and vacuum arcs, to calculate the power extraction from an hurricane, and to discuss the effect of transport angular momentum on the radiactive heating of planetary atmospheres. This development is seen to be advantageous and opens options for systematic improvements.Comment: 22 pages, 1 figure, submitted to review, added one referenc

    Looking For Disoriented Chiral Condensates From Pion Distributions

    Get PDF
    We suggest two methods for the detection of the formation of disoriented chiral condensates in heavy ion collisions. We show that the variance in the number of charged pions (in a suitable range of momentum space) provides a signature for the observation of a disoriented chiral condensate. The signal should be observable even if multiple domains of Dχ\chiC form provided the average number of pions per domain is significantly larger than unity. The variance of the number charged pions alone provides a signal which can be used even if the number of neutral pions cannot be measured in a given detector. On the other hand, the probability distribution in RR, the proportion of neutral pions to all pions emitted in heavy ion collisions in certain kinematic regions, has been suggested as a signal of a disoriented chiral condensate. Here we note that the signature can be greatly enhanced by making suitable cuts in the data. In particular, we consider reducing the data set such that the kk pions with lowest pTp_T are all neutral. We find that, given such cuts, can be substantially different from 1/3. For example, for a single D$\chi$C domain without contamination due to incoherently emitted pions, is 3/5 given the pion with lowest pTp_T is neutral, and 5/7 given the two pions with lowest pTp_T are both neutral, {\it etc.}. The effects of multi-domain Dχ\chiC formation and noise due to incoherent pion emission can be systematically incorporated. Potential applications to experiments and their limitations are briefly discussed.Comment: 16 pages in REVTeX, 7 figures. Combined and updated version of nucl-th/9903029 and nucl-th/9904074. Accepted by Phys. Rev.

    Plasmonic chirality imprinting on nucleobase-displaying supramolecular nanohelices by metal-nucleobase recognition

    Get PDF
    Supramolecular self-assembly is an important process that enables the conception of complex structures mimicking biological motifs. Herein, we constructed helical fibrils through chiral self-assembly of nucleobase–peptide conjugates (NPCs), where achiral nucleobases are helically displayed on the surface of fibrils, comparable to polymerized nucleic acids. Selective binding between DNA and the NPC fibrils was observed with fluorescence polarization. Taking advantage of metal–nucleobase recognition, we highlight the possibility of deposition/assembly of plasmonic nanoparticles onto the fibrillar constructs. In this approach, the supramolecular chirality of NPCs can be adaptively imparted to metallic nanoparticles, covering them to generate structures with plasmonic chirality that exhibit significantly improved colloidal stability. The self-assembly of rationally designed NPCs into nanohelices is a promising way to engineer complex, optically diverse nucleobase-derived nanomaterials

    Radiotherapy prolongs the survival of advanced non-small-cell lung cancer patients undergone to an immune-modulating treatment with dose-fractioned cisplatin and metronomic etoposide and bevacizumab (mPEBev)

    Get PDF
    Radiotherapy (RT), together with a direct cytolytic effect on tumor tissue, also elicits systemic immunological events, which sometimes result in the regression of distant metastases (abscopal effect). We have shown the safety and anti-tumor activity of a novel metronomic chemotherapy (mCH) regimen with dose-fractioned cisplatin, oral etoposide and bevacizumab, a mAb against the vasculo-endothelial-growthfactor (mPEBev regimen), in metastatic non-small-cell-lung cancer (mNSCLC). This regimen, designed on the results of translational studies, showed immune-modulating effects that could trigger and empower the immunological effects associated with tumor irradiation. In order to assess this, we carried out a retrospective analysis in a subset of 69 consecutive patients who received the mPEBev regimen within the BEVA2007 trial. Forty-five of these patients, also received palliative RT of one or more metastatic sites. Statistical analysis (a Log-rank test) revealed a much longer median survival in the group of patients who received RT [mCH vs mCH + RT: 12.1 +/-2.5 (95%CI 3.35-8.6) vs 22.12 +/-4.3 (95%CI 11.9-26.087) months; P=0.015] with no difference in progression-free survival. In particular, their survival correlated with the mPEBev regimen ability to induce the percentage of activated dendritic cells (DCs) (CD3-CD11b+CD15-CD83+CD80+) [Fold to baseline value (FBV) â¤1 vs > 1: 4+/-5.389 (95%CI,0-14.56) vs 56+/-23.05 (95%CI,10.8-101.2) months; P:0.049)] and central-memory-T-cells (CD3+CD8+CD45RA-CCR7+) [FBV â¤1 vs > 1: 8+/-5.96 (95%CI,0-19.68) vs 31+/-12.3 (95%CI,6.94-55.1) months; P:0.045]

    Separability of Black Holes in String Theory

    Full text link
    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)^2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.Comment: 27 page

    Fear of movement/(re)injury in Chinese patients with chronic pain: Factorial validity of the Chinese version of the Tampa Scale for Kinesiophobia

    Get PDF
    Objective: To assess the factor structure of the Chinese version of the Tampa Scale for Kinesiophobia (TSK). Design: Chinese patients with chronic pain attending either orthopaedic specialist services (n = 216) or multidisciplinary specialist pain services (n = 109) participated in this study. Methods: Subjects completed the Chinese version of TSK, The Chronic Pain Grade Questionnaire, Hospital Anxiety and Depression Scale, and questions assessing socio-demographic characteristics. Confirmatory factor analyses were used to compare hierarchical and correlated models of 5 different factor solutions previously reported in patients with chronic pain in the West. Results: Confirmatory factor analyses demonstrated inequality of the TSK factor structure, in that the TSK11 for the orthopaedics sample was best represented by a two-factor correlated model (S-Bχ2 = 49.593; comparative fit index (CFI) = 0.93; normed filt index (NFI) = 0.911; root mean square error of approximation (RMSEA) = 0.025) comprising 2 first-order factors, Somatic Focus (TSK11-SF) and Activity Avoidance (TSK-AA). The pain clinic sample showed a one-factor structure as best representing the TSK4’s underlying dimensions (CFI  = 0.971; NFI = 0.912; RMSEA = 0.048). There was no evidence to support a single overarching concept of kinesiophobia. Conclusion: The TSK appears to have utility in Chinese chronic pain populations. Elucidation of the TSK’s psychometrics properties in other Chinese/Asian pain populations with different diagnoses and presentations of pain problems is warranted

    A comparison of surgical outcomes between endoscopic and robotically assisted thyroidectomy: the authors’ initial experience

    Get PDF
    Background: The gasless, transaxillary endoscopic thyroidectomy (GTET) offers a distinct advantage over the conventional open operation by leaving no visible neck scar, and in an attempt to improve its ergonomics and surgical outcomes, the robotically assisted thyroidectomy (RAT) was introduced. The RAT uses the same endoscopic route as the GTET but with the assistance of the da Vinci S robotic system. Excellent results for RAT have been reported, but it remains unclear whether RAT offers any potential benefits over GTET. Methods: From June to December 2009, 46 patients underwent endoscopic thyroidectomy. Of these patients, 39 had surgery without the robot (GTET) and 7 had surgery with the robot (RAT). Demographics, surgical indications, operative findings, and postoperative outcomes were compared between the two groups. All the patients were followed up for at least 6 months after surgery. Results: Patient demographics, surgical indications, and extent of resection were similar between the two groups. The median total procedure time was significantly longer for RAT (149 min) than for GTET (100 min; p = 0.018), but the contralateral recurrent laryngeal nerve was more likely to identified in RAT (100%) than in GTET (42.9%; p = 0.070). On the average, GTET needed one more surgical assistant than RAT (1 vs. 0; ppublished_or_final_versionSpringer Open Choice, 21 Feb 201

    A multi-species cluster of GES-5 carbapenemase producing Enterobacterales linked by a geographically disseminated plasmid

    Get PDF
    BACKGROUND: Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics but rare resistance mechanisms can compromise detection. One year after a GES-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole genome sequencing (WGS) (later found to be part of a cluster of three cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS: Bacteria were identified by MALDI-TOF, antimicrobial susceptibility testing followed EUCAST guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using PCR detection of GES, pulse-field gel electrophoresis (PFGE) and WGS for the second cluster. RESULTS: The identification of the first GES-5 K. oxytoca isolate was delayed, being identified on WGS. A GES-gene PCR informed the occurrence of the second cluster in real-time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the two clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca,E. coli and E. cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from three hospitals elsewhere in the UK. CONCLUSIONS: Genomic sequencing revolutionized the epidemiological understanding of the clusters, it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
    corecore