12,026 research outputs found
Location Privacy in Spatial Crowdsourcing
Spatial crowdsourcing (SC) is a new platform that engages individuals in
collecting and analyzing environmental, social and other spatiotemporal
information. With SC, requesters outsource their spatiotemporal tasks to a set
of workers, who will perform the tasks by physically traveling to the tasks'
locations. This chapter identifies privacy threats toward both workers and
requesters during the two main phases of spatial crowdsourcing, tasking and
reporting. Tasking is the process of identifying which tasks should be assigned
to which workers. This process is handled by a spatial crowdsourcing server
(SC-server). The latter phase is reporting, in which workers travel to the
tasks' locations, complete the tasks and upload their reports to the SC-server.
The challenge is to enable effective and efficient tasking as well as reporting
in SC without disclosing the actual locations of workers (at least until they
agree to perform a task) and the tasks themselves (at least to workers who are
not assigned to those tasks). This chapter aims to provide an overview of the
state-of-the-art in protecting users' location privacy in spatial
crowdsourcing. We provide a comparative study of a diverse set of solutions in
terms of task publishing modes (push vs. pull), problem focuses (tasking and
reporting), threats (server, requester and worker), and underlying technical
approaches (from pseudonymity, cloaking, and perturbation to exchange-based and
encryption-based techniques). The strengths and drawbacks of the techniques are
highlighted, leading to a discussion of open problems and future work
Absence of Magnetism in Hcp Iron-Nickel at 11 K
Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS
Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning
Dropping tolerance criteria play a central role in Sparse Approximate Inverse
preconditioning. Such criteria have received, however, little attention and
have been treated heuristically in the following manner: If the size of an
entry is below some empirically small positive quantity, then it is set to
zero. The meaning of "small" is vague and has not been considered rigorously.
It has not been clear how dropping tolerances affect the quality and
effectiveness of a preconditioner . In this paper, we focus on the adaptive
Power Sparse Approximate Inverse algorithm and establish a mathematical theory
on robust selection criteria for dropping tolerances. Using the theory, we
derive an adaptive dropping criterion that is used to drop entries of small
magnitude dynamically during the setup process of . The proposed criterion
enables us to make both as sparse as possible as well as to be of
comparable quality to the potentially denser matrix which is obtained without
dropping. As a byproduct, the theory applies to static F-norm minimization
based preconditioning procedures, and a similar dropping criterion is given
that can be used to sparsify a matrix after it has been computed by a static
sparse approximate inverse procedure. In contrast to the adaptive procedure,
dropping in the static procedure does not reduce the setup time of the matrix
but makes the application of the sparser for Krylov iterations cheaper.
Numerical experiments reported confirm the theory and illustrate the robustness
and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure
Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide
We have measured the rf magnetoconductivity of unidirectional lateral
superlattices (ULSLs) by detecting the attenuation of microwave through a
coplanar waveguide placed on the surface. ULSL samples with the principal axis
of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave
electric field are examined. For low microwave power, we observe expected
anisotropic behavior of the commensurability oscillations (CO), with CO in
samples S_perp and S_|| dominated by the diffusion and the collisional
contributions, respectively. Amplitude modulation of the Shubnikov-de Haas
oscillations is observed to be more prominent in sample S_||. The difference
between the two samples is washed out with the increase of the microwave power,
letting the diffusion contribution govern the CO in both samples. The failure
of the intended directional selectivity in the conductivity measured with high
microwave power is interpreted in terms of large-angle electron-phonon
scattering.Comment: 8 pages, 5 figure
Dynamics of iron atoms across the pressure-induced Invar transition in Pd_3Fe
The ^(57)Fe phonon partial density of states (PDOS) in L1_2-ordered Pd_3Fe was studied at high pressures by nuclear resonant inelastic x-ray scattering (NRIXS) measurements and density functional theory (DFT) calculations. The NRIXS spectra showed that the stiffening of the ^(57)Fe PDOS with decreasing volume was slower from 12 to 24 GPa owing to the pressure-induced Invar transition in Pd_3Fe, with a change from a high-moment ferromagnetic (FM) state to a low-moment (LM) state observed by nuclear forward scattering. Force constants obtained from fitting to a Born–von Kármán model showed a relative softening of the first-nearest-neighbor (1NN) Fe-Pd longitudinal force constants at the magnetic transition. For the FM low-pressure state, the DFT calculations gave a PDOS and 1NN longitudinal force constants in good agreement with experiment, but discrepancies for the high-pressure LM state suggest the presence of short-range magnetic order
Kundt spacetimes as solutions of topologically massive gravity
We obtain new solutions of topologically massive gravity. We find the general
Kundt solutions, which in three dimensions are spacetimes admitting an
expansion-free null geodesic congruence. The solutions are generically of
algebraic type II, but special cases are types III, N or D. Those of type D are
the known spacelike-squashed AdS_3 solutions, and of type N are the known AdS
pp-waves or new solutions. Those of types II and III are the first known
solutions of these algebraic types. We present explicitly the Kundt solutions
that are CSI spacetimes, for which all scalar polynomial curvature invariants
are constant, whereas for the general case we reduce the field equations to a
series of ordinary differential equations. The CSI solutions of types II and
III are deformations of spacelike-squashed AdS_3 and the round AdS_3,
respectively.Comment: 30 pages. This material has come from splitting v1 of arXiv:0906.3559
into 2 separate papers. v2: minor changes
Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory.
Copyright © 2008 The American Physical SocietyThe stability and nonlinear dynamics of two semiconductor lasers coupled side to side via evanescent waves are investigated by using three different models. In the composite-cavity model, the coupling between the lasers is accurately taken into account by calculating electric field profiles (composite-cavity modes) of the whole coupled-laser system. A bifurcation analysis of the composite-cavity model uncovers how different types of dynamics, including stationary phase-locking, periodic, quasiperiodic, and chaotic intensity oscillations, are organized. In the individual-laser model, the coupling between individual lasers is introduced phenomenologically with ad hoc coupling terms. Comparison with the composite-cavity model reveals drastic differences in the dynamics. To identify the causes of these differences, we derive a coupled-laser model with coupling terms which are consistent with the solution of the wave equation and the relevant boundary conditions. This coupled-laser model reproduces the dynamics of the composite-cavity model under weak-coupling conditions
Manifolds with 1/4-pinched flag curvature
We say that a nonnegatively curved manifold has quarter pinched flag
curvature if for any two planes which intersect in a line the ratio of their
sectional curvature is bounded above by 4. We show that these manifolds have
nonnegative complex sectional curvature. By combining with a theorem of Brendle
and Schoen it follows that any positively curved manifold with strictly quarter
pinched flag curvature must be a space form. This in turn generalizes a result
of Andrews and Nguyen in dimension 4. For odd dimensional manifolds we obtain
results for the case that the flag curvature is pinched with some constant
below one quarter, one of which generalizes a recent work of Petersen and Tao
Comprehensive surface magnetotransport study of SmB6
After the theoretical prediction that SmB6 is a topological Kondo insulator, there has been an explosion of studies on the SmB6 surface. However, there is not yet an agreement on even the most basic quantities such as the surface carrier density and mobility. In this paper, we carefully revisit Corbino disk magnetotransport studies to find those surface transport parameters. We first show that subsurface cracks exist in the SmB6 crystals, arising both from surface preparation and during the crystal growth. We provide evidence that these hidden subsurface cracks are additional conduction channels, and the large disagreement between earlier surface SmB6 studies may originate from previous interpretations not taking this extra conduction path into account. We provide an update of more reliable magnetotransport data than the previous one (S. Wolgast et al., Phys. Rev. B 92, 115110) and find that the orders-of-magnitude large disagreements in carrier density and mobility come from the surface preparation and the transport geometry rather than the intrinsic sample quality. From this magnetotransport study, we find an updated estimate of the carrier density and mobility of 2.71Ă—1013 (1/cm2) and 104.5 (cm2/Vsec), respectively. We compare our results with other studies of the SmB6 surface. By this comparison, we provide insight into the disagreements and agreements of the previously reported angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and magnetotorque quantum oscillations measurements
- …