36 research outputs found
Autonomous Consolidation of Heterogeneous Record-Structured HTML Data in Chameleon
While progress has been made in querying digital information contained in XML and HTML documents, success in retrieving information from the so called hidden Web (data behind Web forms) has been modest. There has been a nascent trend of developing autonomous tools for extracting information from the hidden Web. Automatic tools for ontology generation, wrapper generation, Weborm querying, response gathering, etc., have been reported in recent research. This thesis presents a system called Chameleon for automatic querying of and response gathering from the hidden Web. The approach to response gathering is based on automatic table structure identification, since most information repositories of the hidden Web are structured databases, and so the information returned in response to a query will have regularities. Information extraction from the identified record structures is performed based on domain knowledge corresponding to the domain specified in a query. So called domain plug-ins are used to make the dynamically generated wrappers domain-specific, rather than conventionally used document-specific
Autonomous Consolidation of Heterogeneous Record-Structured HTML Data in Chameleon
While progress has been made in querying digital information contained in XML and HTML documents, success in retrieving information from the so called hidden Web (data behind Web forms) has been modest. There has been a nascent trend of developing autonomous tools for extracting information from the hidden Web. Automatic tools for ontology generation, wrapper generation, Weborm querying, response gathering, etc., have been reported in recent research. This thesis presents a system called Chameleon for automatic querying of and response gathering from the hidden Web. The approach to response gathering is based on automatic table structure identification, since most information repositories of the hidden Web are structured databases, and so the information returned in response to a query will have regularities. Information extraction from the identified record structures is performed based on domain knowledge corresponding to the domain specified in a query. So called domain plug-ins are used to make the dynamically generated wrappers domain-specific, rather than conventionally used document-specific
Recommended from our members
PPARγ is a gatekeeper for extracellular matrix and vascular cell homeostasis: beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis.
PURPOSE OF REVIEW: Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial cell (PAEC) dysfunction and apoptosis, pulmonary arterial smooth muscle cell (PASMC) proliferation, inflammation, vasoconstriction, and metabolic disturbances that include disrupted bone morphogenetic protein receptor (BMPR2)-peroxisome proliferator-activated receptor gamma (PPARγ) axis and DNA damage. Activation of PPARγ improves many of these mechanisms, although erroneous reports on potential adverse effects of thiazolidinedione (TZD)-class PPARγ agonists reduced their clinical use in the past decade. Here, we review recent findings in heart, lung, and kidney research related to the pathobiology of vascular remodeling and tissue fibrosis, and also potential therapeutic effects of the PPARγ agonist pioglitazone. RECENT FINDINGS: Independent of its metabolic effects (improved insulin sensitivity and fatty acid handling), PPARγ activation rescues BMPR2 dysfunction, inhibits TGFβ/Smad3/CTGF and TGFβ/pSTAT3/pFoxO1 pathways, and induces the PPARγ/apoE axis, inhibiting vascular remodeling. PPARγ activation dampens mtDNA damage via PPARγ/UBR5/ATM pathway, improves function of endothelial progenitor cells (EPCs), and decrease renal fibrosis by repressing TGFβ/pSTAT3 and TGFβ/EGR1. SUMMARY: Pharmacological PPARγ activation improves many hallmarks of PAH, including dysfunction of BMPR2-PPARγ axis, PAEC, PASMC, EPC, mitochondria/metabolism, and inflammation. Recent randomized controlled trials, including IRIS (Insulin Resistance Intervention After Stroke Trial), emphasize the beneficial effects of PPARγ agonists in PAH patients, leading to recent revival for clinical use
Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis.
Loblolly pine (LP; Pinus taeda L.) is an economically and ecologically important tree in the southeastern U.S. To advance understanding of the loblolly pine (LP; Pinus taeda L.) genome, we sequenced and analyzed 100 BAC clones and performed a Cot analysis. The Cot analysis indicates that the genome is composed of 57, 24, and 10% highly-repetitive, moderately-repetitive, and single/low-copy sequences, respectively (the remaining 9% of the genome is a combination of fold back and damaged DNA). Although single/low-copy DNA only accounts for 10% of the LP genome, the amount of single/low-copy DNA in LP is still 14 times the size of the Arabidopsis genome. Since gene numbers in LP are similar to those in Arabidopsis, much of the single/low-copy DNA of LP would appear to be composed of DNA that is both gene- and repeat-poor. Macroarrays prepared from a LP bacterial artificial chromosome (BAC) library were hybridized with probes designed from cell wall synthesis/wood development cDNAs, and 50 of the "targeted" clones were selected for further analysis. An additional 25 clones were selected because they contained few repeats, while 25 more clones were selected at random. The 100 BAC clones were Sanger sequenced and assembled. Of the targeted BACs, 80% contained all or part of the cDNA used to target them. One targeted BAC was found to contain fungal DNA and was eliminated from further analysis. Combinations of similarity-based and ab initio gene prediction approaches were utilized to identify and characterize potential coding regions in the 99 BACs containing LP DNA. From this analysis, we identified 154 gene models (GMs) representing both putative protein-coding genes and likely pseudogenes. Ten of the GMs (all of which were specifically targeted) had enough support to be classified as intact genes. Interestingly, the 154 GMs had statistically indistinguishable (α = 0.05) distributions in the targeted and random BAC clones (15.18 and 12.61 GM/Mb, respectively), whereas the low-repeat BACs contained significantly fewer GMs (7.08 GM/Mb). However, when GM length was considered, the targeted BACs had a significantly greater percentage of their length in GMs (3.26%) when compared to random (1.63%) and low-repeat (0.62%) BACs. The results of our study provide insight into LP evolution and inform ongoing efforts to produce a reference genome sequence for LP, while characterization of genes involved in cell wall production highlights carbon metabolism pathways that can be leveraged for increasing wood production
Transcriptomic dissection of the rice – Burkholderia glumae interaction
BACKGROUND: Bacterial panicle blight caused by the bacterium Burkholderia glumae is an emerging disease of rice in the United States. Not much is known about this disease, the disease cycle or any source of disease resistance. To understand the interaction between rice and Burkholderia glumae, we used transcriptomics via next-generation sequencing (RNA-Seq) and bioinformatics to identify differentially expressed transcripts between resistant and susceptible interactions and formulate a model for rice resistance to the disease. RESULTS: Using inoculated young seedlings as sample tissues, we identified unique transcripts involved with resistance to bacterial panicle blight, including a PIF-like ORF1 and verified differential expression of some selected genes using qRT-PCR. These transcripts, which include resistance genes of the NBS-LRR type, kinases, transcription factors, transporters and expressed proteins with functions that are not known, have not been reported in other pathosystems including rice blast or bacterial blight. Further, functional annotation analysis reveals enrichment of defense response and programmed cell death (biological processes); ATP and protein binding (molecular functions); and mitochondrion-related (cell component) transcripts in the resistant interaction. CONCLUSION: Taken together, we formulated a model for rice resistance to bacterial panicle blight that involves an activation of previously unknown resistance genes and their activation partners upon challenge with B. glumae. Other interesting findings are that 1) though these resistance transcripts were up-regulated upon inoculation in the resistant interaction, some of them were already expressed in the water-inoculated control from the resistant genotype, but not in the water- and bacterium-inoculated samples from the susceptible genotype; 2) rice may have co-opted an ORF that was previously a part of a transposable element to aid in the resistance mechanism; and 3) resistance may have existed immediately prior to rice domestication. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-755) contains supplementary material, which is available to authorized users
Soluble Receptor for Advanced Glycation End Products (sRAGE) Is a Sensitive Biomarker in Human Pulmonary Arterial Hypertension.
Pulmonary arterial hypertension (PAH) is a progressive condition with an unmet need for early diagnosis, better monitoring, and risk stratification. The receptor for advanced glycation end products (RAGE) is activated in response to hypoxia and vascular injury, and is associated with inflammation, cell proliferation and migration in PAH. For the adult cohort, we recruited 120 patients with PAH, 83 with idiopathic PAH (IPAH) and 37 with connective tissue disease-associated PAH (CTD-PAH), and 48 controls, and determined potential plasma biomarkers by enzyme-linked immunoassay. The established heart failure marker NTproBNP and IL-6 plasma levels were several-fold higher in both adult IPAH and CTD-PAH patients versus controls. Plasma soluble RAGE (sRAGE) was elevated in IPAH patients (3044 ± 215.2 pg/mL) and was even higher in CTD-PAH patients (3332 ± 321.6 pg/mL) versus controls (1766 ± 121.9 pg/mL; p < 0.01). All three markers were increased in WHO functional class II+III PAH versus controls (p < 0.001). Receiver-operating characteristic analysis revealed that sRAGE has diagnostic accuracy comparable to prognostic NTproBNP, and even outperforms NTproBNP in the distinction of PAH FC I from controls. Lung tissue RAGE expression was increased in IPAH versus controls (mRNA) and was located predominantly in the PA intima, media, and inflammatory cells in the perivascular space (immunohistochemistry). In the pediatric cohort, plasma sRAGE concentrations were higher than in adults, but were similar in PH (n = 10) and non-PH controls (n = 10). Taken together, in the largest adult sRAGE PAH study to date, we identify plasma sRAGE as a sensitive and accurate PAH biomarker with better performance than NTproBNP in the distinction of mild PAH from controls
Bilateral lung transplantation for pediatric pulmonary arterial hypertension: perioperative management and one-year follow-up
BackgroundBilateral lung transplantation (LuTx) remains the only established treatment for children with end-stage pulmonary arterial hypertension (PAH). Although PAH is the second most common indication for LuTx, little is known about optimal perioperative management and midterm clinical outcomes.MethodsProspective observational study on consecutive children with PAH who underwent LuTx with scheduled postoperative VA-ECMO support at Hannover Medical School from December 2013 to June 2020.ResultsTwelve patients with PAH underwent LuTx (mean age 11.9 years; age range 1.9–17.8). Underlying diagnoses included idiopathic (n = 4) or heritable PAH (n = 4), PAH associated with congenital heart disease (n = 2), pulmonary veno-occlusive disease (n = 1), and pulmonary capillary hemangiomatosis (n = 1). The mean waiting time was 58.5 days (range 1–220d). Three patients were bridged to LuTx on VA-ECMO. Intraoperative VA-ECMO/cardiopulmonary bypass was applied and VA-ECMO was continued postoperatively in all patients (mean ECMO-duration 185 h; range 73–363 h; early extubation). The median postoperative ventilation time was 28 h (range 17–145 h). Echocardiographic conventional and strain analysis showed that 12 months after LuTx, all patients had normal biventricular systolic function. All PAH patients are alive 2 years after LuTx (median follow-up 53 months, range 26–104 months).ConclusionLuTx in children with end-stage PAH resulted in excellent midterm outcomes (100% survival 2 years post-LuTx). Postoperative VA-ECMO facilitates early extubation with rapid gain of allograft function and sustained biventricular reverse-remodeling and systolic function after RV pressure unloading and LV volume loading
Bilateral lung transplantation for pediatric pulmonary arterial hypertension: perioperative management and one-year follow-up
Background: Bilateral lung transplantation (LuTx) remains the only established treatment for children with end-stage pulmonary arterial hypertension (PAH). Although PAH is the second most common indication for LuTx, little is known about optimal perioperative management and midterm clinical outcomes.
Methods: Prospective observational study on consecutive children with PAH who underwent LuTx with scheduled postoperative VA-ECMO support at Hannover Medical School from December 2013 to June 2020.
Results: Twelve patients with PAH underwent LuTx (mean age 11.9 years; age range 1.9–17.8). Underlying diagnoses included idiopathic (n = 4) or heritable PAH (n = 4), PAH associated with congenital heart disease (n = 2), pulmonary veno-occlusive disease (n = 1), and pulmonary capillary hemangiomatosis (n = 1). The mean waiting time was 58.5 days (range 1–220d). Three patients were bridged to LuTx on VA-ECMO. Intraoperative VA-ECMO/cardiopulmonary bypass was applied and VA-ECMO was continued postoperatively in all patients (mean ECMO-duration 185 h; range 73–363 h; early extubation). The median postoperative ventilation time was 28 h (range 17–145 h). Echocardiographic conventional and strain analysis showed that 12 months after LuTx, all patients had normal biventricular systolic function. All PAH patients are alive 2 years after LuTx (median follow-up 53 months, range 26–104 months).
Conclusion: LuTx in children with end-stage PAH resulted in excellent midterm outcomes (100% survival 2 years post-LuTx). Postoperative VA-ECMO facilitates early extubation with rapid gain of allograft function and sustained biventricular reverse-remodeling and systolic function after RV pressure unloading and LV volume loading
Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines
BACKGROUND: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. RESULTS: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. CONCLUSIONS: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation
Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine
Loblolly pine (LP; Pinus taeda L.) is the most economically important tree in the U.S. and a cornerstone species in southeastern forests. However, genomics research on LP and other conifers has lagged behind studies on flowering plants due, in part, to the large size of conifer genomes. As a means to accelerate conifer genome research, we constructed a BAC library for the LP genotype 7-56. The LP BAC library consists of 1,824,768 individually-archived clones making it the largest single BAC library constructed to date, has a mean insert size of 96 kb, and affords 7.6X coverage of the 21.7 Gb LP genome. To demonstrate the efficacy of the library in gene isolation, we screened macroarrays with overgos designed from a pine EST anchored on LP chromosome 10. A positive BAC was sequenced and found to contain the expected full-length target gene, several gene-like regions, and both known and novel repeats. Macroarray analysis using the retrotransposon IFG-7 (the most abundant repeat in the sequenced BAC) as a probe indicates that IFG-7 is found in roughly 210,557 copies and constitutes about 5.8% or 1.26 Gb of LP nuclear DNA; this DNA quantity is eight times the Arabidopsis genome. In addition to its use in genome characterization and gene isolation as demonstrated herein, the BAC library should hasten whole genome sequencing of LP via next-generation sequencing strategies/technologies and facilitate improvement of trees through molecular breeding and genetic engineering. The library and associated products are distributed by the Clemson University Genomics Institute (www.genome.clemson.edu)