165 research outputs found

    Clinicopathological Spectrum of Ovarian Tumors: A 5‑Year Experience in a Tertiary Health Care Center

    Get PDF
    Background: Ovarian tumors are a heterogeneous group of neoplasm of epithelial, stromal, and germ cell origin. Even in a single class of tumor, there exists inherent heterogeneity with biological behavior ranging from benign to the highly aggressive malignant tumor. The management of the patient also depends on the histological type of the tumor. These facts fascinated and prompted us to undertake the present study.Aim: To analyze the modes of presentation and various histopathological patterns of ovarian tumor. Materials and Methods: It was a retrospective observational study. The study was conducted inDepartment of Pathology, B. J. Medical College Pune, India from July 2006 to June 2011. All the histopathology slides of ovarian tumors during the study period were retrieved and reviewed along with the patient’s demographics, clinical features, and gross findings. Data thus collected were analyzed. Results: A total of 226 cases of ovarian tumors out of 1098 cases of female genital cancers were studied. Age ranged from 12 to 80 years. The surface epithelial tumors were the most common ovarian tumor constituting 163 cases (72.1%), followed by germ cell tumors 45 cases (19.9%). The most common complaint in the present study was pain in the abdomen (115 cases, 50.9%) irrespective of the nature of the ovarian tumor. Bilaterality was common in malignant tumors (66.7%, 16/24). Right and left side was almost equally affected among unilateral tumors. The size of the tumor variedfrom 3 to 32 cm. Conclusions: By knowing clinical data, sonography findings, and gross features, we can narrow our differential diagnosis and reach to the final microscopic diagnosis in most of the cases in very cost‑effective manner.KEY WORDS: Germ cell tumor, ovarian tumor, surface epithelial tumor

    Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India.

    Get PDF
    BACKGROUND: The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March-June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. RESULTS: Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. CONCLUSIONS: A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission

    Candle Soot Nanoparticles versus Multiwalled Carbon Nanotubes as a High-Performance Cathode Catalyst for Li–CO2Mars Batteries for Mars Exploration

    Get PDF
    Increased CO2 emissions on the earth causing global warming and climate change have provided a thrust to explore Li-CO2 battery chemistry, where CO2 is used as an energy carrier. In addition, the occurrence of CO2 as a major natural abundant gas in the Martian atmosphere opens the possibility of using Li-CO2 batteries for interplanetary Mars missions. In this work, we aim to investigate facile and inexpensive candle soot carbon nanoparticles as a cathode catalyst against commercially available multiwalled carbon nanotubes (MWCNTs) for stable and high-performance Li-CO2 batteries for Mars exploration. The unique interconnected morphology and higher surface area of candle soot nanoparticles facilitate better reversibility (more than 80 cycles) compared to MWCNTs even at a high current density of 200 mA g-1 with a cutoff capacity of 500 mAh g-1. The full discharge capacity for candle soot nanoparticles was measured to be 5318 mAh g-1 with a coulombic efficiency of 42% as compared to 16% for MWCNTs. The rate capability studies were performed to establish the ability to operate the system reversibly at different current densities in a simulated Martian atmosphere. The outcome of this study paves the way toward developing a candle soot cathode-based practicable Li-CO2 battery for utilization on Mars

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations

    Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery

    Get PDF
    Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer

    Ability of Group IVB metallocene polyethers containing dienestrol to arrest the growth of selected cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monomeric Group IVB (Ti, Zr and Hf) metallocenes represent a new class of antitumor compounds. There is literature on the general biological activities of some organotin compounds. Unfortunately, there is little information with respect to the molecular level activity of these organotin compounds. We recently started focusing on the anti-cancer activity of organotin polymers that we had made for other purposes and as part of our platinum anti-cancer effort.</p> <p>Methods</p> <p>For this study, we synthesized a new series of metallocene-containing compounds coupling the metallocene unit with dienestrol, a synthetic, nonsteroidal estrogen. This is part of our effort to couple known moieties that offer antitumor activity with biologically active units hoping to increase the biological activity of the combination. The materials were confirmed to be polymeric using light scattering photometry and the structural repeat unit was verified employing matrix assisted laser desorption ionization mass spectrometry and infrared spectroscopy results.</p> <p>Results</p> <p>The polymers demonstrated the ability to suppress the growth of a series of tumor cell lines originating from breast, colon, prostrate, and lung cancers at concentrations generally lower than those required for inhibition of cell growth by the commonly used antitumor drug cisplatin.</p> <p>Conclusion</p> <p>These drugs show great promise in vitro against a number of cancer cell lines and due to their polymeric nature will most likely be less toxic than currently used metal-containing drugs such as cisplatin. These drugs also offer several addition positive aspects. First, the reactants are commercially available so that additional synthetic steps are not needed. Second, synthesis of the polymer is rapid, occurring within about 15 seconds. Third, the interfacial synthetic system is already industrially employed in the synthesis of aromatic nylons and polycarbonates. Thus, the ability to synthesize large amounts of the drugs is straight forward.</p
    corecore