12,068 research outputs found

    Isgur-Wise function in a QCD potential model with coulombic potential as perturbation

    Full text link
    We study heavy light mesons in a QCD inspired quark model with the Cornell potential−4αS3r+br+c-\frac{4\alpha_{S}}{3r}+br+c. Here we consider the linear term brbr as the parent and −4αS3r+c-\frac{4\alpha_{S}}{3r}+c i.e.the Coloumbic part as the perturbation.The linear parent leads to Airy function as the unperturbed wavefunction. We then use the Dalgarno method of perturbation theory to obtain the total wavefunction corrected upto first order with Coulombic peice as the perturbation.With these wavefunctions, we study the Isgur-Wise function and calculate its slope and curvature.Comment: paper has been modified in Airy functions calculation upto o(r^3

    An analysis of the Isgur-Wise Function and its derivatives within a Heavy-Light QCD Quark Model

    Full text link
    In determining the mesonic wave function from QCD inspired potential model, if the linear confinement term is taken as parent (with columbic term as perturbation), Airy's function appears in the resultant wave function - which is an infinite series. In the study of Isgur-Wise function (IWF) and its derivatives with such a wave function, the infinite upper limit of integration gives rise to divergence. In this paper, we have proposed some reasonable cut-off values for the upper limit of such integrations and studied the subsequent effect on the results. We also study the sensitivity of the order of polynomial approximation of the infinite Airy series in calculating the derivatives of IWF.Comment: 14 pages,6 tables 8 figure

    Unparticle physics in diphoton production at the CERN LHC

    Full text link
    We have considered the di-photon production with unparticle at LHC. The contributions of spin-0 and spin-2 unparticle to the di-photon production are studied in the invariant mass and other kinematical distributions, along with their dependencies on the model dependent parameters. The signal corresponding to the unparticle is significant for moderate coupling constant values.Comment: 17 pages, 15 eps figure

    IN SILICO STUDY FOR IDENTIFICATION OF DRUG LIKE INHIBITOR FROM NATURAL COMPOUNDS AGAINST INHA REDUCTASE OF MYCOBACTERIUM TUBERCULOSIS

    Get PDF
    Objective: Natural products have played an important role for developing new drugs and becoming popular due to toxicity and side effects of allopathic medicine. The main objective of this research work is to find drug-like inhibitor from natural compounds that can help to treat tuberculosis. Methods: In silico docking studies were performed with four different compounds (isopimpinellin, pimpinellin, malic acid, and psoralen) from Angelica archangelica against enoyl acyl carrier protein reductase of Mycobacterium tuberculosis i.e., drug target. Flex X and Autodock Vina were used to dock the compound onto an active site of InhA to determine the probable binding of these inhibitors.Results: Among various natural compounds that were screened as inhibitors, psoralen was found to bind in closest proximity to the InhA binding site. This is compared to the commonly recommended anti-tubercular drugs. Drug like properties of these compounds were calculated by ADME/Tox calculations.Conclusion: According to molecular docking studies and ADME values the compound (psoralen) from Angelica archangelica was conformed as a promising lead compound and also will be the good starting point for natural plant based pharmaceutical chemistry.Â

    4D Topological Mass by Gauging Spin

    Full text link
    We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.Comment: 4 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1310.210

    Anatomy of neck configuration in fission decay

    Full text link
    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes 236U^{236}U and 232Th^{232}Th in the valley of stability and exotic neutron rich isotopes 250U^{250}U, 256U^{256}U, 260U^{260}U, 240Th^{240}Th, 250Th^{250}Th, 256Th^{256}Th likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for 260^{260}U and 256^{256}Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay like multi-fragmentation fission may also be inferred from this study.Comment: 16 pages, 5 figures (Accepted

    Unparticle physics in top pair signals at the LHC and ILC

    Full text link
    We study the effects of unparticle physics in the pair productions of top quarks at the LHC and ILC. By considering vector, tensor and scalar unparticle operators, as appropriate, we compute the total cross sections for pair production processes depending on scale dimension d_{\U}. We find that the existence of unparticles would lead to measurable enhancements on the SM predictions at the LHC. In the case of ILC this may become two orders of magnitude larger than that of SM, for smaller values of d_\U, a very striking signal for unparticles.Comment: 19 pages, 9 figures, analysis for ILC has been adde

    Tetramer Orbital-Ordering induced Lattice-Chirality in Ferrimagnetic, Polar MnTi2O4

    Full text link
    Using density-functional theory calculations and experimental investigations on structural, magnetic and dielectric properties, we have elucidated a unique tetragonal ground state for MnTi2O4, a Ti^{3+} (3d^1)-ion containing spinel-oxide. With lowering of temperature around 164 K, cubic MnTi2O4 undergoes a structural transition into a polar P4_1 tetragonal structure and at further lower temperatures, around 45 K, the system undergoes a paramagnetic to ferrimagnetic transition. Magnetic superexchange interactions involving Mn and Ti spins and minimization of strain energy associated with co-operative Jahn-Teller distortions plays a critical role in stabilization of the unique tetramer-orbital ordered ground state which further gives rise to lattice chirality through subtle Ti-Ti bond-length modulations
    • …
    corecore