401 research outputs found

    Lepton Masses in a Minimal Model with Triplet Higgs Bosons and S3S_3 Flavor Symmetry

    Full text link
    Viable neutrino and charged lepton masses and mixings are obtained by imposing a S3×Z4×Z3S_3 \times Z_4 \times Z_3 flavor symmetry in a model with a few additional Higgs. We use two SU(2)LSU(2)_L triplet Higgs which are arranged as a doublet of S3S_3, and standard model singlet Higgs which are also put as doublets of S3S_3. We break the S3S_3 symmetry in this minimal model by giving vacuum expectation values (VEV) to the additional Higgs fields. Dictated by the minimum condition for the scalar potential, we obtain certain VEV alignments which allow us to maintain μτ\mu-\tau symmetry in the neutrino sector, while breaking it maximally for the charged leptons. This helps us to simultaneously explain the hierarchical charged lepton masses, and the neutrino masses and mixings. In particular, we obtain maximal θ23\theta_{23} and zero θ13\theta_{13}. We allow for a mild breaking of the μτ\mu-\tau symmetry for the neutrinos and study the phenomenology. We give predictions for θ13\theta_{13} and the CP violating Jarlskog invariant JCPJ_{CP}, as a function of the μτ\mu-\tau symmetry breaking parameter. We also discuss possible collider signatures and phenomenology associated with lepton flavor violating processes.Comment: 29 pages, 5 figures. Version to be appeared in PRD. Phenomenology of Lepton flavor violation and possible collider signatures of this model have been include

    On Probing theta_{23} in Neutrino Telescopes

    Full text link
    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle theta_{23} introduces the strongest variation on the flux ratios of ultra high energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain theta_{23}. We consider astrophysical neutrinos originating from pion, muon-damped and neutron sources and make a comparative study of their sensitivity reach to theta_{23}. It is found that neutron sources are most favorable for testing deviations from maximal theta_{23}. Using a chi^2 analysis, we show in particular the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis ``impure'' sources, i.e., deviations from the usually assumed initial (1 : 2 : 0), (0 : 1 : 0) or (1 : 0 : 0) flux compositions.Comment: 17 pages, 5 figures. Added discussion on experimental errors. To appear in PR

    Turbulent Supernova Shock Waves and the Sterile Neutrino Signature in Megaton Water Detectors

    Get PDF
    The signatures of sterile neutrinos in the supernova neutrino signal in megaton water Cerenkov detectors are studied. Time dependent modulation of the neutrino signal emerging from the sharp changes in the oscillation probability due to shock waves is shown to be a smoking gun for the existence of sterile neutrinos. These modulations and indeed the entire neutrino oscillation signal is found to be different for the case with just three active neutrinos and the cases where there are additional sterile species mixed with the active neutrinos. The effect of turbulence is taken into account and it is found that the effect of the shock waves, while modifed, remain significant and measurable. Supernova neutrino signals in water detectors can therefore give unambiguous proof for the existence of sterile neutrinos, the sensitivity extending beyond that for terrestial neutrino experiments. In addition the time dependent modulations in the signal due to shock waves can be used to trace the evolution of the shock wave inside the supernova.Comment: 28 pages, 11 figure

    Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes

    Full text link
    We expound the impact of extra sterile species on the ultra high energy neutrino fluxes in neutrino telescopes. We use three types of well-known flux ratios and compare the values of these flux ratios in presence of sterile neutrinos, with those predicted by deviation from the tribimaximal mixing scheme. We show that in the upcoming neutrino telescopes, its easy to confuse between the signature of sterile neutrinos with that of the deviation from tribimaximal mixing. We also show that if the measured flux ratios acquire a value well outside the range predicted by the standard scenario with three active neutrinos only, it might be possible to tell the presence of extra sterile neutrinos by observing ultra high energy neutrinos in future neutrino telescopes.Comment: 22 pages, version to appear in Phys. Rev.

    Research and development work on substitute electrical resistance alloys for heating elements

    Get PDF
    From the start of the Second Five- Year Plan great emphasis has been laid on production and utilisation of electric power in various industrial and domestic appliances. Electric heating is thus gradually repla- cing solid-fuels, gas and oil heating . Increasing application of electric heat with all its attendant advantages will fail to register full impact unless suitable electrical heating elements , having long high temperature service life are indigenously avai- lable at reasonable cost

    Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    Full text link
    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR

    Three Generation Neutrino Oscillation Parameters after SNO

    Get PDF
    We examine the solar neutrino problem in the context of the realistic three neutrino mixing scenario including the SNO charged current (CC) rate. The two independent mass squared differences Δm212\Delta m^2_{21} and Δm312Δm322\Delta m^2_{31} \approx \Delta m^2_{32} are taken to be in the solar and atmospheric ranges respectively. We incorporate the constraints on Δ\Deltam312^2_{31} as obtained by the SuperKamiokande atmospheric neutrino data and determine the allowed values of Δm212\Delta m^2_{21}, θ12\theta_{12} and θ13\theta_{13} from a combined analysis of solar and CHOOZ data. Our aim is to probe the changes in the values of the mass and mixing parameters with the inclusion of the SNO data as well as the changes in the two-generation parameter region obtained from the solar neutrino analysis with the inclusion of the third generation. We find that the inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more restrictive bound on θ13\theta_{13}. Since the allowed values of θ13\theta_{13} are constrained to very small values by the CHOOZ experiment there is no qualitative change over the two generation allowed regions in the Δm212tan2θ12\Delta m^2_{21} - \tan^2 \theta_{12} plane. The best-fit comes in the LMA region and no allowed area is obtained in the SMA region at 3σ\sigma level from combined solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR

    Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory

    Full text link
    The results of a Monte Carlo simulation study of the hadron energy response for the magnetized Iron CALorimeter detector, ICAL, proposed to be located at the India-based Neutrino Observatory (INO) is presented. Using a GEANT4 modeling of the detector ICAL, interactions of atmospheric neutrinos with target nuclei are simulated. The detector response to hadrons propagating through it is investigated using the hadron hit multiplicity in the active detector elements. The detector response to charged pions of fixed energy is studied first, followed by the average response to the hadrons produced in atmospheric neutrino interactions using events simulated with the NUANCE event generator. The shape of the hit distribution is observed to fit the Vavilov distribution, which reduces to a Gaussian at high energies. In terms of the parameters of this distribution, we present the hadron energy resolution as a function of hadron energy, and the calibration of hadron energy as a function of the hit multiplicity. The energy resolution for hadrons is found to be in the range 85% (for 1GeV) -- 36% (for 15 GeV).Comment: 14 pages, 10 figures (24 eps files
    corecore