929 research outputs found

    Spin correlations due to antishadowing

    Get PDF
    The effects of antishadowing related to the spin correlations of particles in multiparticle production are discussed. It is shown that significant spin correlations should be expected at the LHC energies.Comment: 5 pages, 1 figure, minor change

    Identification of the growth arrest and DNA damage protein GADD34 in the normal human heart and demonstration of alterations in expression following myocardial ischaemia

    Get PDF
    Growth arrest and DNA damage protein 34 (GADD34) is a multifunctional protein upregulated in response to cellular stress and is believed to mediate DNA repair and restore protein synthesis. In the present study we have examined GADD34 immunoreactivity in human myocardial tissue at defined survival times following cardiac arrest and determined alterations in expression following ischaemia. In the normal human heart, GADD34 immunoreactivity was generally intense and present within most cells. GADD34 immunoreactivity was downregulated in tissue displaying ischaemic damage and remained intense in adjacent non-infarcted tissue. Unlike brain, GADD34 was not found to be upregulated in the peri-infarct zone. Cells displaying apoptotic changes were located in regions displaying reduced GADD34 immunoreactivity. In the brain, it is thought that GADD34 supports re-initiation of protein synthesis following ischaemia. Similarly, GADD34 may perform important functions in cardiac tissue in response to ischaemia

    Minimum-error discrimination between symmetric mixed quantum states

    Full text link
    We provide a solution of finding optimal measurement strategy for distinguishing between symmetric mixed quantum states. It is assumed that the matrix elements of at least one of the symmetric quantum states are all real and nonnegative in the basis of the eigenstates of the symmetry operator.Comment: 10 page

    Anomalous broadening of the spin-flop transition in the reentrant spin-glass phase of La2x_{2-x}Srx_xCuO4_4 (x=0.018x=0.018)

    Full text link
    The magnetization in a lightly doped La2x_{2-x}Srx_xCuO4_4 (x=0.018x=0.018) single crystal was measured. Spin-flop transition was clearly observed in the hole doped antiferromagnetically ordered state under increasing magnetic fields perpendicular to the CuO2_2 plane. In the spin-glass phase below 25K, the spin-flop transition becomes broad but the step in the magnetization curve associated with the transition remains finite at the lowest temperature. We show in this report that, at low temperature, the homogeneous antiferromagnetic order is disturbed by the re-distribution of holes, and that the spatial variance of the local hole concentration around x=0.018x=0.018 increases.Comment: to be published to Physical Review

    Product Groups, Discrete Symmetries, and Grand Unification

    Get PDF
    We study grand unified theories based on an SU(5)xSU(5) gauge group in which the GUT scale, M_{GUT}, is the VEV of an exact or approximate modulus, and in which fast proton decay is avoided through a combination of a large triplet mass and small triplet couplings. These features are achieved by discrete symmetries. In many of our models, M_{GUT} is generated naturally by the balance of higher dimension terms that lift the GUT modulus potential, and soft supersymmetry breaking masses. The theories often lead to interesting patterns of quark and lepton masses. We also discuss some distinctions between grand unified theories and string unification.Comment: 23 pages; no figures; revtex

    Non-Fermi liquid regime of a doped Mott insulator

    Full text link
    We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnetic exchange. A low doping regime δ<J/t\delta<J/t is found, in which the quasiparticle coherent scale is low : ϵF=J(δ/δ)2\epsilon_F^* = J (\delta/\delta^*)^2 with δ=J/t\delta^*=J/t (the ratio of typical exchange to hopping). In the ``quantum critical regime'' ϵF<T<J\epsilon_F^*<T<J, several physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation time 1/T1const.1/T_1\sim const., resistivity ρdc(T)T\rho_{dc}(T) \propto T, optical lifetime \tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey ω/T\omega/T scaling, e.g. Jqχ(q,ω)tanh(ω/2T)J\sum_q \chi''(q,\omega) \propto \tanh (\omega/2T). In contrast, single-electron properties display stronger deviations from Fermi liquid theory in this regime with a ω\sqrt{\omega} dependence of the inverse single-particle lifetime and a 1/ω1/\sqrt{\omega} decay of the photoemission intensity. On the basis of this model and of various experimental evidence, it is argued that the proximity of a quantum critical point separating a glassy Mott-Anderson insulator from a metallic ground-state is an important ingredient in the physics of the normal state of cuprate superconductors (particularly the Zn-doped materials). In this picture the corresponding quantum critical regime is a ``slushy'' state of spins and holes with slow spin and charge dynamics responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes, some references adde

    SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics

    Full text link
    Based on the SO(3) gauge symmetry for three family leptons and general see-saw mechanism, we present a simple scheme that allows three nearly degenerate Majorana neutrino masses needed for hot dark matter. The vacuum structure of the spontaneous SO(3) symmetry breaking can automatically lead to a maximal CP-violating phase. Thus the current neutrino data on both the atmospheric neutrino anomaly and solar neutrino deficit can be accounted for via maximal mixings without conflict with the current data on the neutrinoless double beta decay. The model also allows rich interesting phenomena on lepton flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the version to appear in Phys. Rev.
    corecore