22,872 research outputs found
Peeling and Sliding in Nucleosome Repositioning
We investigate the mechanisms of histone sliding and detachment with a
stochastic model that couples thermally-induced, passive histone sliding with
active motor-driven histone unwrapping. Analysis of a passive loop or twist
defect-mediated histone sliding mechanism shows that diffusional sliding is
enhanced as larger portions of the DNA is peeled off the histone. The mean
times to histone detachment and the mean distance traveled by the motor complex
prior to histone detachment are computed as functions of the intrinsic speed of
the motor. Fast motors preferentially induce detachment over sliding. However,
for a fixed motor speed, increasing the histone-DNA affinity (and thereby
decreasing the passive sliding rate) increases the mean distance traveled by
the motor.Comment: 5 pp, 4 fig
The effects of ground hydrology on climate sensitivity to solar constant variations
The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient
Chapman-Enskog expansion about nonequilibrium states: the sheared granular fluid
The Chapman-Enskog method of solution of kinetic equations, such as the
Boltzmann equation, is based on an expansion in gradients of the deviations fo
the hydrodynamic fields from a uniform reference state (e.g., local
equilibrium). This paper presents an extension of the method so as to allow for
expansions about \emph{arbitrary}, far-from equilibrium reference states. The
primary result is a set of hydrodynamic equations for studying variations from
the arbitrary reference state which, unlike the usual Navier-Stokes
hydrodynamics, does not restrict the reference state in any way. The method is
illustrated by application to a sheared granular gas which cannot be studied
using the usual Navier-Stokes hydrodynamics.Comment: 23 pages, no figures. Submited to PRE Replaced to correct misc.
errors Replaced to correct misc. errors, make notation more consistant,
extend discussio
Surface roughness during depositional growth and sublimation of ice crystals
Full version of an earlier discussion paper (Chou et al. 2018)Ice surface properties can modify the scattering properties of atmospheric ice crystals and therefore affect the radiative properties of mixed-phase and cirrus clouds. The Ice Roughness Investigation System (IRIS) is a new laboratory setup designed to investigate the conditions under which roughness develops on single ice crystals, based on their size, morphology and growth conditions (relative humidity and temperature). Ice roughness is quantified through the analysis of speckle in 2-D light-scattering patterns. Characterization of the setup shows that a supersaturation of 20 % with respect to ice and a temperature at the sample position as low as-40 °C could be achieved within IRIS. Investigations of the influence of humidity show that higher supersaturations with respect to ice lead to enhanced roughness and irregularities of ice crystal surfaces. Moreover, relative humidity oscillations lead to gradual ratcheting-up of roughness and irregularities, as the crystals undergo repeated growth-sublimation cycles. This memory effect also appears to result in reduced growth rates in later cycles. Thus, growth history, as well as supersaturation and temperature, influences ice crystal growth and properties, and future atmospheric models may benefit from its inclusion in the cloud evolution process and allow more accurate representation of not just roughness but crystal size too, and possibly also electrification properties.Peer reviewe
Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy
We consider the possibility that the ultra-high-energy cosmic ray flux has a
small component of exotic particles which create showers much deeper in the
atmosphere than ordinary hadronic primaries. It is shown that applying the
conventional AGASA/HiRes/Auger data analysis procedures to such exotic events
results in large systematic biases in the energy spectrum measurement. SubGZK
exotic showers may be mis-reconstructed with much higher energies and mimick
superGZK events. Alternatively, superGZK exotic showers may elude detection by
conventional fluorescence analysis techniques.Comment: 22 pages, 5 figure
A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System
We measure the low-field Hall resistivity of a magnetically-doped
two-dimensional electron gas as a function of temperature and
electrically-gated carrier density. Comparing these results with the carrier
density extracted from Shubnikov-de Haas oscillations reveals an excess Hall
resistivity that increases with decreasing temperature. This excess Hall
resistivity qualitatively tracks the paramagnetic polarization of the sample,
in analogy to the ferromagnetic anomalous Hall effect. The data are consistent
with skew-scattering of carriers by disorder near the crossover to
localization
- …