34,616 research outputs found
Experimental probes of axions
Experimental searches for axions or axion-like particles rely on
semiclassical phenomena resulting from the postulated coupling of the axion to
two photons. Sensitive probes of the extremely small coupling constant can be
made by exploiting familiar, coherent electromagnetic laboratory techniques,
including resonant enhancement of transitions using microwave and optical
cavities, Bragg scattering, and coherent photon-axion oscillations. The axion
beam may either be astrophysical in origin as in the case of dark matter axion
searches and solar axion searches, or created in the laboratory from laser
interactions with magnetic fields. This note is meant to be a sampling of
recent experimental results.Comment: 6 pages, 7 figures, proceedings of XXIX Physics in Collision
Conference, Kobe, Japan, August 30-September 2, 2009. An incorrect file was
accidentally submitted as V1. V2 is the version in the actual proceedings.
Difference: axion-fermion scattering is always suppressed by the Yukawa
coupling m_f/f_a. High kinetic energies do not overcome this suppressio
Coast-ocean-atmosphere-ocean mesoscale interaction
In the case of cold air outbreaks, the combination of the coastal shape and the sea surface temperature (SST) pattern have a profound effect in establishing a low level mesoscale atmospheric circulation as a result of differential heating due to both variations in overwater path length and the SST. A convergence (or divergence) line then forms along a line exactly downwind of the major bend in the coastline. All this is consistent with the structure of the cloud patterns seen in a high resolution Landsat picture of the cloud streets and the major features are simulated well with a boundary layer model. The dominant convergence line is marked by notably larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a strong westerly component in the boundary layer, the wind shear across the inversion gives rise to Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector and to the major convergence line. The induced mesoscale circulation will feedback on the ocean by intensifying the wind generated ocean wave growth and altering their orientation. Coastal cyclogenesis is due in large part not only to the fluxes of heat and moisture from the ocean, but particularly to the differential heating and moistening of the boundary layer air when the air trajectories pass over a well defined pattern of SST
The rheology of dense, polydisperse granular fluids under shear
The solution of the Enskog equation for the one-body velocity distribution of
a moderately dense, arbitrary mixture of inelastic hard spheres undergoing
planar shear flow is described. A generalization of the Grad moment method,
implemented by means of a novel generating function technique, is used so as to
avoid any assumptions concerning the size of the shear rate. The result is
illustrated by using it to calculate the pressure, normal stresses and shear
viscosity of a model polydisperse granular fluid in which grain size, mass and
coefficient of restitution varies amoungst the grains. The results are compared
to a numerical solution of the Enskog equation as well as molecular dynamics
simulations. Most bulk properties are well described by the Enskog theory and
it is shown that the generalized moment method is more accurate than the simple
(Grad) moment method. However, the description of the distribution of
temperatures in the mixture predicted by Enskog theory does not compare well to
simulation, even at relatively modest densities.Comment: 8 postscript figures Replaced with new version correcting an error in
the SME calculations and misc. small corrections. Second replacement with
final correction of SME calculation
Peeling and Sliding in Nucleosome Repositioning
We investigate the mechanisms of histone sliding and detachment with a
stochastic model that couples thermally-induced, passive histone sliding with
active motor-driven histone unwrapping. Analysis of a passive loop or twist
defect-mediated histone sliding mechanism shows that diffusional sliding is
enhanced as larger portions of the DNA is peeled off the histone. The mean
times to histone detachment and the mean distance traveled by the motor complex
prior to histone detachment are computed as functions of the intrinsic speed of
the motor. Fast motors preferentially induce detachment over sliding. However,
for a fixed motor speed, increasing the histone-DNA affinity (and thereby
decreasing the passive sliding rate) increases the mean distance traveled by
the motor.Comment: 5 pp, 4 fig
Light-Cone Distribution Amplitudes of Light Tensor Mesons in QCD
We present a study for two-quark light-cone distribution amplitudes for the
light tensor meson states with quantum number . Because
of the G-parity, the chiral-even two-quark light-cone distribution amplitudes
of this tensor meson are antisymmetric under the interchange of momentum
fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd
ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark
mass correction are shown. We estimate the relevant parameters, the decay
constants and , and first Gegenbauer moment , by
using the QCD sum rule method. These parameters play a central role in the
investigation of meson decaying into the tensor mesons.Comment: 18 pages, 3 Figure
Designing dark energy afterglow experiments
Chameleon fields, which are scalar field dark energy candidates, can evade
fifth force constraints by becoming massive in high-density regions. However,
this property allows chameleon particles to be trapped inside a vacuum chamber
with dense walls. Afterglow experiments constrain photon-coupled chameleon
fields by attempting to produce and trap chameleon particles inside such a
vacuum chamber, from which they will emit an afterglow as they regenerate
photons. Here we discuss several theoretical and systematic effects underlying
the design and analysis of the GammeV and CHASE afterglow experiments. We
consider chameleon particle interactions with photons, Fermions, and other
chameleon particles, as well as with macroscopic magnetic fields and matter.
The afterglow signal in each experiment is predicted, and its sensitivity to
various properties of the experimental apparatus is studied. Finally, we use
CHASE data to exclude a wide range of photon-coupled chameleon dark energy
models.Comment: 29 pages, 31 figures, 1 tabl
- …