research

The rheology of dense, polydisperse granular fluids under shear

Abstract

The solution of the Enskog equation for the one-body velocity distribution of a moderately dense, arbitrary mixture of inelastic hard spheres undergoing planar shear flow is described. A generalization of the Grad moment method, implemented by means of a novel generating function technique, is used so as to avoid any assumptions concerning the size of the shear rate. The result is illustrated by using it to calculate the pressure, normal stresses and shear viscosity of a model polydisperse granular fluid in which grain size, mass and coefficient of restitution varies amoungst the grains. The results are compared to a numerical solution of the Enskog equation as well as molecular dynamics simulations. Most bulk properties are well described by the Enskog theory and it is shown that the generalized moment method is more accurate than the simple (Grad) moment method. However, the description of the distribution of temperatures in the mixture predicted by Enskog theory does not compare well to simulation, even at relatively modest densities.Comment: 8 postscript figures Replaced with new version correcting an error in the SME calculations and misc. small corrections. Second replacement with final correction of SME calculation

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019