22,974 research outputs found
Wave propagation in stepped and joined shells Annual report, 1 Sep. 1968 - 1 Sep. 1969
Shell impact response and wave propagation in cylindrical and conical shells by experimental and analytical method
Stochastic self-assembly of incommensurate clusters
We examine the classic problem of homogeneous nucleation and growth by
deriving and analyzing a fully discrete stochastic master equation. Upon
comparison with results obtained from the corresponding mean-field
Becker-D\"{o}ring equations we find striking differences between the two
corresponding equilibrium mean cluster concentrations. These discrepancies
depend primarily on the divisibility of the total available mass by the maximum
allowed cluster size, and the remainder. When such mass incommensurability
arises, a single remainder particle can "emulsify" or "disperse" the system by
significantly broadening the mean cluster size distribution. This finite-sized
broadening effect is periodic in the total mass of the system and can arise
even when the system size is asymptotically large, provided the ratio of the
total mass to the maximum cluster size is finite. For such finite ratios we
show that homogeneous nucleation in the limit of large, closed systems is not
accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl
Exact Master Equation and Quantum Decoherence of Two Coupled Harmonic Oscillators in a General Environment
In this paper we derive an exact master equation for two coupled quantum
harmonic oscillators interacting via bilinear coupling with a common
environment at arbitrary temperature made up of many harmonic oscillators with
a general spectral density function. We first show a simple derivation based on
the observation that the two-harmonic oscillator model can be effectively
mapped into that of a single harmonic oscillator in a general environment plus
a free harmonic oscillator. Since the exact one harmonic oscillator master
equation is available [Hu, Paz and Zhang, Phys. Rev. D \textbf{45}, 2843
(1992)], the exact master equation with all its coefficients for this two
harmonic oscillator model can be easily deduced from the known results of the
single harmonic oscillator case. In the second part we give an influence
functional treatment of this model and provide explicit expressions for the
evolutionary operator of the reduced density matrix which are useful for the
study of decoherence and disentanglement issues. We show three applications of
this master equation: on the decoherence and disentanglement of two harmonic
oscillators due to their interaction with a common environment under Markovian
approximation, and a derivation of the uncertainty principle at finite
temperature for a composite object, modeled by two interacting harmonic
oscillators. The exact master equation for two, and its generalization to ,
harmonic oscillators interacting with a general environment are expected to be
useful for the analysis of quantum coherence, entanglement, fluctuations and
dissipation of mesoscopic objects towards the construction of a theoretical
framework for macroscopic quantum phenomena.Comment: 35 pages, revtex, no figures, 2nd version, references added, to
appear in PR
Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly
We report the first measurements of phonon dispersion curves on the (001)
surface of the strong three-dimensional topological insulator Bi2Se3. The
surface phonon measurements were carried out with the aid of coherent helium
beam surface scattering techniques. The results reveal a prominent signature of
the exotic metallic Dirac fermion quasi-particles, including a strong Kohn
anomaly. The signature is manifest in a low energy isotropic convex dispersive
surface phonon branch with a frequency maximum of 1.8 THz, and having a
V-shaped minimum at approximately 2kF that defines the Kohn anomaly.
Theoretical analysis attributes this dispersive profile to the renormalization
of the surface phonon excitations by the surface Dirac fermions. The
contribution of the Dirac fermions to this renormalization is derived in terms
of a Coulomb-type perturbation model
Coupling Products and Services in Design Processes: A Case Study of Smart Drip
Design evolution is sequential and progressively associated with industrial and technological developments as well as human lifestyle needs. In response to current design trends toward smart products, this study presents a new perspective on product-service design to facilitate the design of innovative products. The proposed approach focuses on applying TRIZ to developing a physical product associated with its possible service supports to fulfill customers’ demands. It is based on the construct that every aspect of product and service quality should be taken into account as a whole in the early design stage. A case study of intravenous infusion(smart drip) design was conducted to demonstrate the applicability of the proposed approach.
Keywords: product-service design, TRIZ, smart product, intravenous infusion, case stud
- …