631 research outputs found
Pareto Optimizing and Scalarly Stationary Sequences
AbstractThe paper deals with vector optimization problems where the solution set (the weakly efficient set) may be empty. We generalize the results known in scalar optimization concerning minimizing and stationary sequences. The relations between these two concepts are given
High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis
<p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p
Phylogenetics and Biogeography of the Phalaenopsis violacea (Orchidaceae) Species Complex Based on Nuclear and Plastid DNA
The Phalaenopsis violacea complex includes two species P violacea Witte and Phalaenopsis bellina (Rchb f) E A Christ However three forms of P violacea have been found in different areas including Sumatra the Malay Peninsula and Mentawai Island The phylogenetic tree inferred from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) the trnL intron and the atpB rbcL spacer of plastid DNA were used to clarify the phylogenetics and biogeography of the P violacea complex Analyses of the trnL intron sequences and of the atpB rbcL spacer did not allow for apparent discrimination among these three species of the P violacea complex Based on the phylogenetic tree inferred from th
Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress
The effects of spirulina supplementation on preventing skeletal muscle damage on untrained human beings were examined. Sixteen students volunteered to take Spirulina platensis in addition to their normal diet for 3-weeks. Blood samples were taken after finishing the Bruce incremental treadmill exercise before and after treatment. The results showed that plasma concentrations of malondialdehyde (MDA) were significantly decreased after supplementation with spirulina (P < 0.05). The activity of blood superoxide dismutase (SOD) was significantly raised after supplementation with spirulina or soy protein (P < 0.05). Both of the blood glutathione peroxidaes (GP (x) ) and lactate dehydrogenase (LDH) levels were significantly different between spirulina and soy protein supplementation by an ANCOVA analysis (P < 0.05). In addition, the lactate (LA) concentration was higher and the time to exhaustion (TE) was significantly extended in the spirulina trail (P < 0.05). These results suggest that ingestion of S. platensis showed preventive effect of the skeletal muscle damage and that probably led to postponement of the time of exhaustion during the all-out exercise
Condensate fraction and critical temperature of a trapped interacting Bose gas
By using a mean field approach, based on the Popov approximation, we
calculate the temperature dependence of the condensate fraction of an
interacting Bose gas confined in an anisotropic harmonic trap. For systems
interacting with repulsive forces we find a significant decrease of the
condensate fraction and of the critical temperature with respect to the
predictions of the non-interacting model. These effects go in the opposite
direction compared to the case of a homogeneous gas. An analytic result for the
shift of the critical temperature holding to first order in the scattering
length is also derived.Comment: 8 pages, REVTEX, 2 figures, also available at
http://anubis.science.unitn.it/~oss/bec/BEC.htm
The relationship between studentsâ engagement and the development of Transactive Memory Systems in MUVE: An experience report
Student engagement is a very important topic in higher education hence, it drew a lot of research interest over the years. The use of educational Multi-User Virtual Environments (MUVEs) that provide synchronous interaction, dynamic, interactive and social learning experiences have the potential to increase student engagement and contribute to their learning experience. Due to increased social and cognitive presence, the use of such environments can result in greater student engagement when compared to traditional asynchronous learning environments. In this work, we hypothesized that studentsâ engagement in collaborative learning activities will increase if Transactive Memory System (TMS) constructs are present. Thus, we employed the theory of TMS that emphasizes the importance of Specialization, Coordination and Credibility between members in a team. The results show that there is a significant correlation between the development of TMS and studentsâ engagement. In addition, further quantitative and observation analysis reveals some interesting facts about studentsâ engagement with respect to their collaboration in group activities
New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces
We consider a singular Liouville equation on a compact surface, arising from
the study of Chern-Simons vortices in a self dual regime. Using new improved
versions of the Moser-Trudinger inequalities (whose main feature is to be
scaling invariant) and a variational scheme, we prove new existence results.Comment: to appear in GAF
Alternative splicing and genetic diversity of the white collar-1 (wc-1) gene in cereal Phaeosphaeria pathogens
The white collar-1 (wc-1) gene encodes an important light-responsive protein (wc-1) that maintains circadian clocks and controls numerous light-dependent reactions including sporulation in ascomycete fungi. The structure and expression of the wc-1 gene in wheat-biotype Phaeosphaeria nodorum (PN-w) was studied. It was shown that the full-size (3,353 bp in length) wc-1 gene in PN-w contained 4 introns in which introns 1 and 2 were flanked by GC-AG splice borders and were spliced constitutively. However, introns 3 and 4 of the wc-1 gene were alternatively spliced. As the result of alternative splicing (AS), six transcript variants were identified, encoding different lengths of deduced polypeptides (from 1,044 to 1,065aa). Ratios of the wc-1 gene transcript variants in the RNA population were the same in the sporulated and non-sporulated PN-w isolate Sn37-1 and the sporulated PN-w isolate S-79-1, grown under light/dark conditions. The AS of the wc-1 gene may control various light-dependent reactions in PN-w, which leads to diverse morphological, physiological and pathological characters for pathogen infection and spread. Based on the nucleotide and deduced amino acid sequences, the wc-1 gene in cereal Phaeosphaeria pathogens was diverse. It appeared that the deduced wc-1 polypeptide sequences of P. avenaria f. sp. avenaria (Paa), P. avenaria f. sp. triticea (Pat1 and Pat3) and barley biotype P. nodorum (PN-b) were more closely related than PN-w and Phaeosphaeeria sp. (P-rye) from Poland. Based on the wc-1 deduced polypeptide sequences, P. avenaria f. sp. triticea (Pat2) from foxtail barley (Hordeum jubatum L.) was evolutionary well separated from the other cereal Phaeosphaeria pathogens
Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target
By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste
Bose condensates in a harmonic trap near the critical temperature
The mean-field properties of finite-temperature Bose-Einstein gases confined
in spherically symmetric harmonic traps are surveyed numerically. The solutions
of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for
the condensate and low-lying quasiparticle excitations are calculated
self-consistently using the discrete variable representation, while the most
high-lying states are obtained with a local density approximation. Consistency
of the theory for temperatures through the Bose condensation point requires
that the thermodynamic chemical potential differ from the eigenvalue of the GP
equation; the appropriate modifications lead to results that are continuous as
a function of the particle interactions. The HFB equations are made gapless
either by invoking the Popov approximation or by renormalizing the particle
interactions. The latter approach effectively reduces the strength of the
effective scattering length, increases the number of condensate atoms at each
temperature, and raises the value of the transition temperature relative to the
Popov approximation. The renormalization effect increases approximately with
the log of the atom number, and is most pronounced at temperatures near the
transition. Comparisons with the results of quantum Monte Carlo calculations
and various local density approximations are presented, and experimental
consequences are discussed.Comment: 15 pages, 11 embedded figures, revte
- âŠ