1 research outputs found

    Cryptic homoelogy analysis in species and hybrids of genus Zea

    Get PDF
    Cryptic intergenomic pairing of genus Zea was induced by the use of a diluted colchicine solution in order to elucidate the phylogenetic relations and differentiation of the homoeologous genomes. Results indicate that in species and hybrids with 2n = 20, there was chromosome pairing between the homoeologous A and B genomes with a maximum of 5IV, with the exception of Zea diploperennis and their interspecific hybrids where cryptic homoeologous chromosome pairing was not induced. In almost all 2n = 30 hybrids, observed cryptic pairing increased to a maximum of 10III although Z. mays x Z. mays with 2n = 30 did not show significant differences between treated and untreated materials. Pairing was also observed in species and hybrids with 2n = 40, in which a maximum of 10IV was observed, with the exception of Z. mays with 2n = 40 where treated and untreated cells did not differ significantly.This research was supported by the Universidad Nacional de la Plata, Universidad Nacional de Lomas de Zamora and CONICET.Molina, M.; Lopez, C.; Staltari, S.; Chorzempa, S.; Moreno Ferrero, V. (2013). Cryptic homoelogy analysis in species and hybrids of genus Zea. Biologia Plantarum. 57(3):449-456. doi:10.1007/s10535-012-0299-4S449456573Bass, H.W., Riera-Lizarazu, O., Ananiev, E.V.B., Bordolini, S.J., Rines, H.W., Phillips, R.L., Sedat, J.W., Agard, D.A., Cande, Z.W.: Evidence for the coincident initiation of homologous pairing and synapsis during the telomereclustering (bouquet) stage of meiotic prophase. — J. Cell Sci. 113: 1033–1042, 2000.Bozza, C.G., Pawlowsky, W.P.: The cytogenetics of homologous chromosome pairing in meiosis in plants. — Cytogenet. Genet. Res. 120: 313–319, 2008.Chikashige, Y., Haraguchi, T., Hiraoka, Y.: Nuclear envelope attachment is not necessary for telomere function in fission yeast. — Nucleus 1: 481–486, 2010.Dobley, J., Iltis, H.H.: Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. — Amer. J. Bot. 67: 982–993, 1980.Dover, G.A., Riley, R.: The effect of spindle inhibitors applied before meiosis on meiotic chromosome pairing. — J. Cell. Sci. 12: 143–161, 1973.Driscoll, C.J., Darvey, N.L.: Chromosome pairing: effect of colchicine on an isochromosome. — Science 169: 290–291, 1970.Driscoll, C.J., Darvey, N.L., Barber, H.N.: Effect of colchicine on meiosis of hexaploid wheat. — Nature 216: 687–688, 1967.Feldman, M., Avivi, L.: Genetic control of bivalent pairing in common wheat. The mode of Ph1 action. — In: Brandham, P.E. (ed.) Kew Chromosome Conference III. Pp. 269–279. Royal Botanic Garden, London 1988.Feldman, F., Liu, B., Segal, G., Abbo, S., Levy. A.: Rapid elimination of low copy DNA sequences in polyploidy wheat: a possible mechanism for differentiation of homeologous chromosomes. — Genetics 147: 1381–1387, 1997.Fukunaga, K., Hill, J., Vigoroux, Y., Matsuoka, Y., Sanchez G., J., Liu, K., Bucker, E., Doebley, J.: Genetic diversity and population structure of teosinte. — Genetics 169: 2241–2254, 2005.Furini, A., Jewell, C.: Somatic embryogenesis and plant regeneration of maize/Tripsacum hybrids. — Maydica 40: 205–210, 1995.García, M.D., Molina, M. del C.: Embryo rescue and induction of somatic embryogenesis as a method to overcome seed inviability in Zea mays ssp. mays (2n = 40) × Zea mays ssp. parviglumis crosses. — Biol. Plant. 44: 497–501, 2001.García, M.D., Molina, M. del C., Caso, 0.H.: [Maize (Zea mays ssp. mays) plant regeneration from tissue culture and its applications in maize breeding.] — Rev. Fac. Agron. UNLP 68: 15–25, 1992. [In Spanish]Goluboskaya, I.N., Harper, L.C., Pawlowski, W.P., Schicnes, D.; Cande, W.Z.: The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). — Genetics 162: 1979–1993, 2002.González, G., Poggio, L.: Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids. — Genome 54: 26–32, 2011.Harper, L., Golubovskaya, I., Cande, W.Z.: A bouquet of chromosomes. — J. Cell. Sci. 117: 4025–4032, 2004.Iltis, H.H., Benz B.F: Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. — Novon 10: 382–390, 2000.Iltis, H.H.; Dobley J.: Taxonomy of Zea (Gramineae). II Subspecific categories in the Zea mays comple× and a generic synopsis. — Amer. J. Bot. 67: 994–1004, 1980.Jackson, R.C.: Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. — Amer. J. Bot. 69: 1512–1523, 1982.Jackson, R.C., Murray, B.G.: Colchicine-induced quadrivalent formation in Helianthus: evidence of ancient polyploidy. — Theor. appl. Genet. 64: 219–222, 1983.Jenczewski, E., Alix, K.: From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. — Crit. Rev. Plant Sci. 23: 21–25, 2004.Jenkins, G., Chatterjee, R.: Chromosome structure and pairing preferences in tetraploid rye (Secale cereale). — Genome 37: 784–793, 1994.Molina, M. del C.: Estudios citogenéticos evolutivos del Género Zea. [Cytogenetic Study of Zea Genus Evolution] — PhD Thesis, Polytechnic University of Valencia, Valencia 2011. [In Spanish].Molina, M. del C., Chorzempa, S.E., García, M.D.: Meiotic pairing in the hybrid (Zea mays × Zea diploperennis) × Zea luxurians. — Maize Genet. Coop. Newslett. 79: 5–7, 2005.Molina, M. del C., García, M.D.: Influence of ploidy levels on phenotypic and cytogenetic traits in maize and Zea perennis hybrids. — Cytologia 64: 101–109, 1999.Molina, M. del C., García, M.D.: Meiotic pairing in the interspecific hybrid Zea mays, Z. perennis and Zea diploperennis. — Maize Genet. Coop. Newslett. 74: 42–43, 2000.Molina, M. del C., García, M.D.: Ploidy levels affect phenotype and cytogenetic traits in Zea mays ssp. mays (2n = 20 or 40) and Zea mays ssp. parviglumis hybrids — Cytologia 66: 189–196, 2001.Molina, M. del C., García, M.D., López C.G., Moreno Ferrero, V.: Meiotic pairing in the hybrid (Zea diploperennis × Zea perennis) × Zea mays and its reciprocal. — Hereditas 141: 135–141, 2004.Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. I. Evidence for five as the basic chromosomes number. — Theor. appl. Genet. 73: 542–550, 1987.Naranjo, C.A., Molina, M. del C., Poggio, L.: [Evidence of a basic number x = 5 in the genus Zea and its importance in studies of the origin of maize] — Acad. Nac. Cs. Ex. Fis. Nat. 5: 75–84, 1989. [In Spanish].Naranjo, C.A., Poggio, L., Molina, M. del C., Bernatene, E.: Increase in multivalent frequency in F1 hybrids of Zea diploperennis × Z. perennis by colchicine treatment. — Hereditas 120: 241–244, 1994.Poggio, L., Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. 2- colchicine-induced multivalents. — Theor. appl. Genet. 79: 461–464, 1990.Ruiz, C., Sanchez, J.J., Aguilar, S.M.: Potential geographical distribution of teosinte in Mexico: a GISH approach. — Maydica 46: 105–110, 2001.Santos, J.L., Lacadena, J.R., Cermeno, M.C., Orellana, J.: Nucleolar organizer activity in wheat-barley chromosome addition lines. — Heredity 53: 425–429, 1984.Santos, J.L., Orellana, J.: Pairing competition between identical and homologous chromosome in rye and grasshoppers. — Genetics 104: 677–684, 1983.Schnable, J.C., Freeling, M.: Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. — PLoS ONE 6–3: e17855. Doi:101371/journal.pone.0017855, 2011.Schnable, J.C., Springer, N.M., Freeling, M.: Differentiation of maize subgenome by genome dominance and both ancient and ongoing gene loss. — PNAS 108: 4069–4074, 2011.Sokal, R.R., Rohlf, Y.: Biometría. — W.H. Freeman and Company, San Francisco 1978.Swanson-Wagner R., Eichten S., Kumari S., Tiffin P., Stein J., Ware D., Springer N.: Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. — Genome Res., in press, 2012.Swigonová, Z., Lai, J., Ma, J., Ramakrisma, W., Llaca, V., Bennetzen, J., Messing, J.: Close split of sorghum and maize genome progenitors. — Genome Res. 14: 1916–1923, 2004.Wendel, J.: Genome evolution in polyploidy, — Plant mol. Biol. 42: 225–229, 2000.Zickler, D., Kleckner, N.: The leptotene-zygotene transition of meiosis. — Annu. Rev. Genet. 32: 619–697, 1998
    corecore