2 research outputs found
A Novel Clinical and Stress Cardiac Magnetic Resonance (C-CMR-10) Score to Predict Long-Term All-Cause Mortality in Patients with Known or Suspected Chronic Coronary Syndrome
[EN] Vasodilator stress cardiac magnetic resonance (stressCMR) has shown robust diagnostic and prognostic value in patients with known or suspected chronic coronary syndrome (CCS). However, it is unknown whether integration of stressCMR with clinical variables in a simple clinical-imaging score can straightforwardly predict all-cause mortality in this population. We included 6187 patients in a large registry that underwent stressCMR for known or suspected CCS. Several clinical and stressCMR variables were collected, such as left ventricular ejection fraction (LVEF) and ischemic burden (number of segments with stress-induced perfusion defects (PD)). During a median follow-up of 5.56 years, we registered 682 (11%) all-cause deaths. The only independent predictors of all-cause mortality in multivariable analysis were age, male sex, diabetes mellitus (DM), LVEF and ischemic burden. Based on the weight of the chi-square increase at each step of the multivariable analysis, we created a simple clinical-stressCMR (C-CMR-10) score that included these variables (age >= 65 years = 3 points, LVEF 5 segments = 1 point). This 0 to 10 points C-CMR-10 score showed good performance to predict all-cause annualized mortality rate ranging from 0.29%/year (score = 0) to >4.6%/year (score >= 7). The goodness of the model and of the C-CMR-10 score was separately confirmed in 2 internal cohorts (n> 3000 each). We conclude that a novel and simple clinical-stressCMR score, which includes clinical and stressCMR variables, can provide robust prediction of the risk of long-term all-cause mortality in a population of patients with known or suspected CCS.This work was supported by the Instituto de Salud Carlos III and co-funded by Fondo Europeo de Desarrollo Regional (FEDER) (grant numbers PI17/01836 and CIBERCV16/11/00486).Marcos-Garces, V.; Gavara-Doñate, J.; Monmeneu-Menadas, JV.; Lopez-Lereu, MP.; Pérez, N.; Rios-Navarro, C.; De Dios, E.... (2020). A Novel Clinical and Stress Cardiac Magnetic Resonance (C-CMR-10) Score to Predict Long-Term All-Cause Mortality in Patients with Known or Suspected Chronic Coronary Syndrome. Journal of Clinical Medicine. 9(6):1-13. https://doi.org/10.3390/jcm9061957S11396Hendel, R. C., Friedrich, M. G., Schulz-Menger, J., Zemmrich, C., Bengel, F., Berman, D. S., … Nagel, E. (2016). CMR First-Pass Perfusion for Suspected Inducible Myocardial Ischemia. JACC: Cardiovascular Imaging, 9(11), 1338-1348. doi:10.1016/j.jcmg.2016.09.010Chang, S.-A., & Kim, R. J. (2016). The Use of Cardiac Magnetic Resonance in Patients with Suspected Coronary Artery Disease: A Clinical Practice Perspective. Journal of Cardiovascular Ultrasound, 24(2), 96. doi:10.4250/jcu.2016.24.2.96Kiaos, A., Tziatzios, I., Hadjimiltiades, S., Karvounis, C., & Karamitsos, T. D. (2018). Diagnostic performance of stress perfusion cardiac magnetic resonance for the detection of coronary artery disease. International Journal of Cardiology, 252, 229-233. doi:10.1016/j.ijcard.2017.11.066Li, M., Zhou, T., Yang, L., Peng, Z., Ding, J., & Sun, G. (2014). Diagnostic Accuracy of Myocardial Magnetic Resonance Perfusion to Diagnose Ischemic Stenosis With Fractional Flow Reserve as Reference. JACC: Cardiovascular Imaging, 7(11), 1098-1105. doi:10.1016/j.jcmg.2014.07.011Siontis, G. C., Mavridis, D., Greenwood, J. P., Coles, B., Nikolakopoulou, A., Jüni, P., … Windecker, S. (2018). Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ, k504. doi:10.1136/bmj.k504Nagel, E., Greenwood, J. P., McCann, G. P., Bettencourt, N., Shah, A. M., Hussain, S. T., … Berry, C. (2019). Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. New England Journal of Medicine, 380(25), 2418-2428. doi:10.1056/nejmoa1716734Siontis, G. C., Branca, M., Serruys, P., Silber, S., Räber, L., Pilgrim, T., … Hunziker, L. (2019). Impact of left ventricular function on clinical outcomes among patients with coronary artery disease. European Journal of Preventive Cardiology, 26(12), 1273-1284. doi:10.1177/2047487319841939Buckert, D., Kelle, S., Buss, S., Korosoglou, G., Gebker, R., Birkemeyer, R., … Bernhardt, P. (2016). Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clinical Research in Cardiology, 106(3), 219-229. doi:10.1007/s00392-016-1042-5Catalano, O., Moro, G., Perotti, M., Frascaroli, M., Ceresa, M., Antonaci, S., … Priori, S. G. (2012). Late gadolinium enhancement by cardiovascular magnetic resonance is complementary to left ventricle ejection fraction in predicting prognosis of patients with stable coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 14(1). doi:10.1186/1532-429x-14-29Lipinski, M. J., McVey, C. M., Berger, J. S., Kramer, C. M., & Salerno, M. (2013). Prognostic Value of Stress Cardiac Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 62(9), 826-838. doi:10.1016/j.jacc.2013.03.080Gargiulo, P., Dellegrottaglie, S., Bruzzese, D., Savarese, G., Scala, O., Ruggiero, D., … Filardi, P. P. (2013). The Prognostic Value of Normal Stress Cardiac Magnetic Resonance in Patients With Known or Suspected Coronary Artery Disease. Circulation: Cardiovascular Imaging, 6(4), 574-582. doi:10.1161/circimaging.113.000035Kwong, R. Y., Ge, Y., Steel, K., Bingham, S., Abdullah, S., Fujikura, K., … Simonetti, O. P. (2019). Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients With Chest Pain. Journal of the American College of Cardiology, 74(14), 1741-1755. doi:10.1016/j.jacc.2019.07.074Marcos-Garces, V., Gavara, J., Monmeneu, J. V., Lopez-Lereu, M. P., Bosch, M. J., Merlos, P., … Bodi, V. (2020). Vasodilator Stress CMR and All-Cause Mortality in Stable Ischemic Heart Disease. JACC: Cardiovascular Imaging, 13(8), 1674-1686. doi:10.1016/j.jcmg.2020.02.027Heitner, J. F., Kim, R. J., Kim, H. W., Klem, I., Shah, D. J., Debs, D., … Judd, R. M. (2019). Prognostic Value of Vasodilator Stress Cardiac Magnetic Resonance Imaging. JAMA Cardiology, 4(3), 256. doi:10.1001/jamacardio.2019.0035Bodi, V., Sanchis, J., Lopez-Lereu, M. P., Nunez, J., Mainar, L., Monmeneu, J. V., … Llacer, A. (2007). Prognostic Value of Dipyridamole Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 50(12), 1174-1179. doi:10.1016/j.jacc.2007.06.016Bodi, V., Husser, O., Sanchis, J., Núñez, J., Monmeneu, J. V., López-Lereu, M. P., … Llacer, Á. (2012). Prognostic Implications of Dipyridamole Cardiac MR Imaging: A Prospective Multicenter Registry. Radiology, 262(1), 91-100. doi:10.1148/radiol.11110134Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., … van der Meer, P. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 37(27), 2129-2200. doi:10.1093/eurheartj/ehw128Marschner, I. C., Colquhoun, D., Simes, R. J., Glasziou, P., Harris, P., Singh, B. B., … Tonkin, A. (2001). Long-term risk stratification for survivors of acute coronary syndromes. Journal of the American College of Cardiology, 38(1), 56-63. doi:10.1016/s0735-1097(01)01360-2Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., … Cuisset, T. (2019). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41(3), 407-477. doi:10.1093/eurheartj/ehz425Klem, I., Shah, D. J., White, R. D., Pennell, D. J., van Rossum, A. C., Regenfus, M., … Kim, R. J. (2011). Prognostic Value of Routine Cardiac Magnetic Resonance Assessment of Left Ventricular Ejection Fraction and Myocardial Damage. Circulation: Cardiovascular Imaging, 4(6), 610-619. doi:10.1161/circimaging.111.964965Grothues, F., Smith, G. C., Moon, J. C. ., Bellenger, N. G., Collins, P., Klein, H. U., & Pennell, D. J. (2002). Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. The American Journal of Cardiology, 90(1), 29-34. doi:10.1016/s0002-9149(02)02381-0Timmis, A., Raharja, A., Archbold, R. A., & Mathur, A. (2018). Validity of inducible ischaemia as a surrogate for adverse outcomes in stable coronary artery disease. Heart, 104(21), 1733-1738. doi:10.1136/heartjnl-2018-313230Pontone, G., Andreini, D., Bertella, E., Loguercio, M., Guglielmo, M., Baggiano, A., … Masci, P. G. (2015). Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study. European Radiology, 26(7), 2155-2165. doi:10.1007/s00330-015-4064-xHeydari, B., Juan, Y.-H., Liu, H., Abbasi, S., Shah, R., Blankstein, R., … Kwong, R. Y. (2016). Stress Perfusion Cardiac Magnetic Resonance Imaging Effectively Risk Stratifies Diabetic Patients With Suspected Myocardial Ischemia. Circulation: Cardiovascular Imaging, 9(4). doi:10.1161/circimaging.115.004136Vincenti, G., Masci, P. G., Monney, P., Rutz, T., Hugelshofer, S., Gaxherri, M., … Schwitter, J. (2017). Stress Perfusion CMR in Patients With Known and Suspected CAD. JACC: Cardiovascular Imaging, 10(5), 526-537. doi:10.1016/j.jcmg.2017.02.006Buckert, D., Cieslik, M., Tibi, R., Radermacher, M., Rottbauer, W., & Bernhardt, P. (2017). Cardiac magnetic resonance imaging derived quantification of myocardial ischemia and scar improves risk stratification and patient management in stable coronary artery disease. Cardiology Journal, 24(3), 293-304. doi:10.5603/cj.a2017.0036Zemrak, F., & Petersen, S. E. (2011). Late Gadolinium Enhancement CMR Predicts Adverse Cardiovascular Outcomes and Mortality in Patients With Coronary Artery Disease: Systematic Review and Meta-Analysis. Progress in Cardiovascular Diseases, 54(3), 215-229. doi:10.1016/j.pcad.2011.07.003El Aidi, H., Adams, A., Moons, K. G. M., Den Ruijter, H. M., Mali, W. P. T. M., Doevendans, P. A., … Leiner, T. (2014). Cardiac Magnetic Resonance Imaging Findings and the Risk of Cardiovascular Events in Patients With Recent Myocardial Infarction or Suspected or Known Coronary Artery Disease. Journal of the American College of Cardiology, 63(11), 1031-1045. doi:10.1016/j.jacc.2013.11.048Fox, K. A. A., Metra, M., Morais, J., & Atar, D. (2019). The myth of ‘stable’ coronary artery disease. Nature Reviews Cardiology, 17(1), 9-21. doi:10.1038/s41569-019-0233-ySchiele, F., Ecarnot, F., & Chopard, R. (2017). Coronary artery disease: Risk stratification and patient selection for more aggressive secondary prevention. European Journal of Preventive Cardiology, 24(3_suppl), 88-100. doi:10.1177/2047487317706586Fordyce, C. B., Douglas, P. S., Roberts, R. S., Hoffmann, U., Al-Khalidi, H. R., … Patel, M. R. (2017). Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing. JAMA Cardiology, 2(4), 400. doi:10.1001/jamacardio.2016.5501Papireddy, M. R., Lavie, C. J., Deoker, A., Mamudu, H., & Paul, T. K. (2018). New Algorithm for the Prediction of Cardiovascular Risk in Symptomatic Adults with Stable Chest Pain. Current Cardiology Reports, 20(5). doi:10.1007/s11886-018-0973-
Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart
[EN] A study has been made of the effect of chronic exercise on myocardial electrophysiological heterogeneity and stability, as well as of the role of cholinergic neurons in these changes. Determinations in hearts from untrained and trained rabbits on a treadmill were performed. The hearts were isolated and perfused. A pacing electrode and a recording multielectrode were located in the left ventricle. The parameters determined during induced VF, before and after atropine (1 mu M), were: fibrillatory cycle length (VV), ventricular functional refractory period (FRPVF), normalized energy (NE) of the fibrillatory signal and its coefficient of variation (CV), and electrical ventricular activation complexity, as an approach to myocardial heterogeneity and stability. The VV interval was longer in the trained group than in the control group both prior to atropine (78 +/- 10 vs. 68 +/- 10 ms) and after atropine (76 +/- 8 vs. 67 +/- 10 ms). Likewise, FRPVF was longer in the trained group than in the control group both prior to and after atropine (53 +/- 8 vs. 42 +/- 7 ms and 50 +/- 6 vs. 40 +/- 6 ms, respectively), and atropine did not modify FRPVF. The CV of FRPVF was lower in the trained group than in the control group prior to atropine (12.5 +/- 1.5% vs. 15.1 +/- 3.8%) and, decreased after atropine (15.1 +/- 3.8% vs. 12.2 +/- 2.4%) in the control group. The trained group showed higher NE values before (0.40 +/- 0.04 vs. 0.36 +/- 0.05) and after atropine (0.37 +/- 0.04 vs. 0.34 +/- 0.06; p = 0.08). Training decreased the CV of NE both before (23.3 +/- 2% vs. 25.2 +/- 4%; p = 0.08) and after parasympathetic blockade (22.6 +/- 1% vs. 26.1 +/- 5%). Cholinergic blockade did not modify these parameters within the control and trained groups. Activation complexity was lower in the trained than in the control animals before atropine (34 +/- 8 vs. 41 +/- 5), and increased after atropine in the control group (41 +/- 5 vs. 48 +/- 9, respectively). Thus, training decreases the intrinsic heterogeneity of the myocardium, increases electrophysiological stability, and prevents some modifications due to muscarinic block.This research was supported by the Spanish Ministry of Education and Science, (DEP2007-73234-C03-01 to AMA), http://www.mecd.gob.es/portada-mecd/; and the Generalitat Valenciana (PROMETEO 2010/093 to FJC, and FPI/2008/003 to MZ), http://www.gva.es/va/inicio/presentacion; jsessionid=ydprbDQZTsCTz85W1Such-Miquel, L.; Brines-Ferrando, L.; Alberola, A.; Zarzoso Muñoz, M.; Chorro Gasco, FJ.; Guerrero-Martínez, JF.; Parra-Giraldo, G.... (2018). Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart. PLoS ONE. 13(12). https://doi.org/10.1371/journal.pone.0209085S1312Billman, G. E. (2002). Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. Journal of Applied Physiology, 92(2), 446-454. doi:10.1152/japplphysiol.00874.2001Billman, G. E. (2006). A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: Implications for future anti-arrhythmic drug development. Pharmacology & Therapeutics, 111(3), 808-835. doi:10.1016/j.pharmthera.2006.01.002Dor-Haim, H., Berenfeld, O., Horowitz, M., Lotan, C., & Swissa, M. (2013). Reduced Ventricular Arrhythmogeneity and Increased Electrical Complexity in Normal Exercised Rats. PLoS ONE, 8(6), e66658. doi:10.1371/journal.pone.0066658Hamer, M., & Stamatakis, E. (2008). Physical Activity and Cardiovascular Disease: Directions for Future Research. The Open Sports Sciences Journal, 1(1), 1-2. doi:10.2174/1875399x00801010001Powers, S. K., Smuder, A. J., Kavazis, A. N., & Quindry, J. C. (2014). Mechanisms of Exercise-Induced Cardioprotection. Physiology, 29(1), 27-38. doi:10.1152/physiol.00030.2013Hull, S. S., Vanoli, E., Adamson, P. B., Verrier, R. L., Foreman, R. D., & Schwartz, P. J. (1994). Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation, 89(2), 548-552. doi:10.1161/01.cir.89.2.548Hajnal, Á., Nagy, O., Litvai, Á., Papp, J., Parratt, J. R., & Végh, Á. (2005). Nitric oxide involvement in the delayed antiarrhythmic effect of treadmill exercise in dogs. Life Sciences, 77(16), 1960-1971. doi:10.1016/j.lfs.2005.02.015Such, L., Alberola, A. M., Such-Miquel, L., López, L., Trapero, I., Pelechano, F., … Chorro, F. J. (2008). Effects of chronic exercise on myocardial refractoriness: a study on isolated rabbit heart. Acta Physiologica, 193(4), 331-339. doi:10.1111/j.1748-1716.2008.01851.xZarzoso, M., Such-Miquel, L., Parra, G., Brines-Ferrando, L., Such, L., Chorro, F. J., … Alberola, A. (2011). The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. European Journal of Applied Physiology, 112(6), 2185-2193. doi:10.1007/s00421-011-2189-4Billman, G. E. (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1171-H1193. doi:10.1152/ajpheart.00534.2009HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44Beaumont, E., Salavatian, S., Southerland, E. M., Vinet, A., Jacquemet, V., Armour, J. A., & Ardell, J. L. (2013). Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. The Journal of Physiology, 591(18), 4515-4533. doi:10.1113/jphysiol.2013.259382Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178Abramochkin, D. V., Nurullin, L. F., Borodinova, A. A., Tarasova, N. V., Sukhova, G. S., Nikolsky, E. E., & Rosenshtraukh, L. V. (2009). Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Experimental Physiology, 95(2), 265-273. doi:10.1113/expphysiol.2009.050302CHORRO, F. J., CANOVES, J., GUERRERO, J., MAINAR, L., SANCHIS, J., SORIA, E., … LOPEZ-MERINO, V. (2000). Opposite Effects of Myocardial Stretch and Verapamil on the Complexity of the Ventricular Fibrillatory Pattern: An Experimental Study. Pacing and Clinical Electrophysiology, 23(11), 1594-1603. doi:10.1046/j.1460-9592.2000.01594.xSuch, L., Rodriguez, A., Alberola, A., Lopez, L., Ruiz, R., Artal, L., … Chorro, F. J. (2002). Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit heart. Journal of Applied Physiology, 92(1), 225-229. doi:10.1152/jappl.2002.92.1.225Duytschaever, M., Mast, F., Killian, M., Blaauw, Y., Wijffels, M., & Allessie, M. (2001). Methods for Determining the Refractory Period and Excitable Gap During Persistent Atrial Fibrillation in the Goat. Circulation, 104(8), 957-962. doi:10.1161/hc3401.093156Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954Zaitsev, A. V., Berenfeld, O., Mironov, S. F., Jalife, J., & Pertsov, A. M. (2000). Distribution of Excitation Frequencies on the Epicardial and Endocardial Surfaces of Fibrillating Ventricular Wall of the Sheep Heart. Circulation Research, 86(4), 408-417. doi:10.1161/01.res.86.4.408Armour, J. A., Collier, K., Kember, G., & Ardell, J. L. (1998). Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274(4), R939-R949. doi:10.1152/ajpregu.1998.274.4.r939Armour, J. A., & Hopkins, D. A. (1990). Activity of in vivo canine ventricular neurons. American Journal of Physiology-Heart and Circulatory Physiology, 258(2), H326-H336. doi:10.1152/ajpheart.1990.258.2.h326D’Souza, A., Bucchi, A., Johnsen, A. B., Logantha, S. J. R. J., Monfredi, O., Yanni, J., … Boyett, M. R. (2014). Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nature Communications, 5(1). doi:10.1038/ncomms4775Sartiani, L., Romanelli, M., Mugelli, A., & Cerbai, E. (2015). Updates on HCN Channels in the Heart: Function, Dysfunction and Pharmacology. Current Drug Targets, 16(8), 868-876. doi:10.2174/1389450116666150531152047Herrmann, S., Layh, B., & Ludwig, A. (2011). Novel insights into the distribution of cardiac HCN channels: An expression study in the mouse heart. Journal of Molecular and Cellular Cardiology, 51(6), 997-1006. doi:10.1016/j.yjmcc.2011.09.005Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.116190