4,440 research outputs found

    Sorption of Water & Some Straight- & Branched-chain Aliphatic Alcohols by Casein

    Get PDF
    94-9

    Packing Fractions and Maximum Angles of Stability of Granular Materials

    Full text link
    In two-dimensional rotating drum experiments, we find two separate influences of the packing fraction of a granular heap on its stability. For a fixed grain shape, the stability increases with packing fraction. However, in determining the relative stability of different grain shapes, those with the lowest average packing fractions tend to form the most stable heaps. We also show that only the configuration close to the surface of the pile figures prominently.Comment: 4 pages, 4 figure

    Ballistic magnetoresistance in nickel single-atom conductors

    Full text link
    Large ballistic magnetoresistance (BMR) has been measured in Ni single-atom conductors electrodeposited between microfabricated thin films. These measurements irrefutably eliminate any magnetostriction related artifacts in the BMR effect.Comment: 12 pages, 3 Figure

    Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties

    Full text link
    Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp hybridized sigma bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties. The puckering of the sheet is explained as a mechanism to stabilize the sp sigma bonds. The anisotropic bond properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather than triangular. As a consequence the chiral angles of related boron nanotubes range from 0 to 90 degrees. Given the electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic, irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the basis of a different type of structure control within nanotechnology.Comment: 16 pages, 17 figures, 2 tables, Versions: v1=preview, v2=first final, v3=minor corrections, v4=document slightly reworke

    Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes

    Full text link
    We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled BN nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response. Excitons with binding energy larger than 2 eV are found in the (8,0) BN nanotubes. Moreover, unlike the carbon nanotubes, theory predicts that these exciton states are comprised of coherent supposition of transitions from several different subband pairs, giving rise to novel behaviors.Comment: 4 pages, 4 figure

    Noninvasive Embedding of Single Co Atoms in Ge(111)2x1 Surfaces

    Full text link
    We report on a combined scanning tunneling microscopy (STM) and density functional theory (DFT) based investigation of Co atoms on Ge(111)2x1 surfaces. When deposited on cold surfaces, individual Co atoms have a limited diffusivity on the atomically flat areas and apparently reside on top of the upper pi-bonded chain rows exclusively. Voltage-dependent STM imaging reveals a highly anisotropic electronic perturbation of the Ge surface surrounding these Co atoms and pronounced one-dimensional confinement along the pi-bonded chains. DFT calculations reveal that the individual Co atoms are in fact embedded in the Ge surface, where they occupy a quasi-stationary position within the big 7-member Ge ring in between the 3rd and 4th atomic Ge layer. The energy needed for the Co atoms to overcome the potential barrier for penetration in the Ge surface is provided by the kinetic energy resulting from the deposition process. DFT calculations further demonstrate that the embedded Co atoms form four covalent Co-Ge bonds, resulting in a Co4+ valence state and a 3d5 electronic configuration. Calculated STM images are in perfect agreement with the experimental atomic resolution STM images for the broad range of applied tunneling voltages.Comment: 19 pages, 15 figures, 3 table

    Graphitic-BN Based Metal-free Molecular Magnets From A First Principle Study

    Full text link
    We perform a first principle calculation on the electronic properties of carbon doped graphitic boron nitride graphitic BN. It was found that carbon substitution for either boron or nitrogen atom in graphitic BN can induce spontaneous magnetization. Calculations based on density functional theory with the local spin density approximation on the electronic band structure revealed a spin polarized, dispersionless band near the Fermi energy. Spin density contours showed that the magnetization density originates from the carbon atom. The magnetization can be attributed to the carbon 2p electron. Charge density distribution shows that the carbon atom forms covalent bonds with its three nearest neighbourhood. The spontaneous magnetization survives the curvature effect in BN nanotubes, suggesting the possibility of molecular magnets made from BN. Compared to other theoretical models of light-element or metal-free magnetic materials, the carbon-doped BN are more experimentally accessible and can be potentially useful.Comment: 8 pages, 4 figure

    Resynthesized Brassica juncea lines with novel organellar genome constitution obtained through protoplast fusion

    Get PDF
    This article does not have an abstract

    Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA(b) gene from Bacillus thuringiensis

    Get PDF
    A synthetic cryIA(b) gene coding for an insecticidal crystal protein of Bacillus thuringiensis (Bt) was transferred to cabbage cultivar 'Golden Acre' by co-cultivating hypocotyl explants with Agrobacterium tumefaciens. Transformed plants resistant to kanamycin were regenerated. Hybridization experiments demonstrated gene integration and mRNA expression. Immunoblot analysis revealed high-level expression of Bt toxin protein in the transgenic plants. The expression resulted in a significant insecticidal activity of transgenic cabbage plants against the larvae of diamondback moth (Plutella xylostella). The results also demonstrated that a synthetic gene based on monocot codon usage can be expressed in dicotyledonous plants for insect control
    corecore