359 research outputs found

    Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall

    Full text link
    The A+B --> C reaction-diffusion process is studied in a system where the reagents are separated by a semipermeable wall. We use reaction-diffusion equations to describe the process and to derive a scaling description for the long-time behavior of the reaction front. Furthermore, we show that a critical localization-delocalization transition takes place as a control parameter which depends on the initial densities and on the diffusion constants is varied. The transition is between a reaction front of finite width that is localized at the wall and a front which is detached and moves away from the wall. At the critical point, the reaction front remains at the wall but its width diverges with time [as t^(1/6) in mean-field approximation].Comment: 7 pages, PS fil

    Reaction-diffusion fronts with inhomogeneous initial conditions

    Full text link
    Properties of reaction zones resulting from A+B -> C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time-evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.Comment: 11 pages, 3 figures, submitted to J. Phys.

    Critical behavior and Griffiths effects in the disordered contact process

    Get PDF
    We study the nonequilibrium phase transition in the one-dimensional contact process with quenched spatial disorder by means of large-scale Monte-Carlo simulations for times up to 10910^9 and system sizes up to 10710^7 sites. In agreement with recent predictions of an infinite-randomness fixed point, our simulations demonstrate activated (exponential) dynamical scaling at the critical point. The critical behavior turns out to be universal, even for weak disorder. However, the approach to this asymptotic behavior is extremely slow, with crossover times of the order of 10410^4 or larger. In the Griffiths region between the clean and the dirty critical points, we find power-law dynamical behavior with continuously varying exponents. We discuss the generality of our findings and relate them to a broader theory of rare region effects at phase transitions with quenched disorder.Comment: 10 pages, 8 eps figures, final version as publishe

    Formation of Liesegang patterns: A spinodal decomposition scenario

    Full text link
    Spinodal decomposition in the presence of a moving particle source is proposed as a mechanism for the formation of Liesegang bands. This mechanism yields a sequence of band positions x_n that obeys the spacing law x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial concentration of the reagents is determined and we find that the functional form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure

    Computing Aggregate Properties of Preimages for 2D Cellular Automata

    Full text link
    Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm --- incremental aggregation --- that can compute aggregate properties of the set of precursors exponentially faster than na{\"i}ve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Traffic flow on realistic road networks with adaptive traffic lights

    Full text link
    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adaptive vs adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links, and one which is informed by upstream links only. We find that, in general, both the mean and the fluctuation of the travel time are smallest when using the joint upstream-downstream control strategy.Comment: 41 pages, pdflate

    Impact of immigrants on a multi-agent economical system

    Get PDF
    © 2018 Kaufmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. We consider a multi-agent model of a simple economical system and study the impacts of a wave of immigrants on the stability of the system. Our model couples a labor market with a goods market. We first create a stable economy with N agents and study the impact of adding n new workers in the system. The time to reach a new equilibrium market is found to obey a power law in n. The new wages and market prices are observed to decrease as 1/n, whereas the wealth of agents remains unchanged

    Spreading of a density front in the K\"untz-Lavall\'ee model of porous media

    Full text link
    We analyze spreading of a density front in the K\"untz-Lavall\'ee model of porous media. In contrast to previous studies, where unusual properties of the front were attributed to anomalous diffusion, we find that the front evolution is controlled by normal diffusion and hydrodynamic flow, the latter being responsible for apparent enhancement of the front propagation speed. Our finding suggests that results of several recent experiments on porous media, where anomalous diffusion was reported based on the density front propagation analysis, should be reconsidered to verify the role of a fluid flow
    corecore