409 research outputs found
Plant-induced bacterial gene silencing: a novel control method for bacterial wilt disease
Ralstonia pseudosolanacearum, a notorious phytopathogen, is responsible for causing bacterial wilt, leading to significant economic losses globally in many crops within the Solanaceae family. Despite various cultural and chemical control strategies, managing bacterial wilt remains a substantial challenge. This study demonstrates, for the first time, the effective use of plant-induced bacterial gene silencing against R. pseudosolanacearum, facilitated by Tobacco rattle virus-mediated gene silencing, to control bacterial wilt symptoms in Nicotiana benthamiana. The methodology described in this study could be utilized to identify novel phytobacterial virulence factors through both forward and reverse genetic approaches. To validate plant-induced gene silencing, small RNA fractions extracted from plant exudates were employed to silence bacterial gene expression, as indicated by the reduction in the expression of GFP and virulence genes in R. pseudosolanacearum. Furthermore, treatment of human and plant pathogenic Gram-negative and Gram-positive bacteria with plant-generated small RNAs resulted in the silencing of target genes within 48 hours. Taken together, the results suggest that this technology could be applied under field conditions, offering precise, gene-based control of target bacterial pathogens while preserving the indigenous microbiota
Distinguishing Six Edible Berries Based on Metabolic Pathway and Bioactivity Correlations by Non-targeted Metabolite Profiling
Berries have been used as valuable sources of polyphenols for human health; however, injudicious uses of berries are widespread without regard to the specific metabolite constituent of each berry. We classified 6 different edible berries (honeyberry, blueberry, mandarin melonberry, mulberry, chokeberry, and Korean black raspberry) based on their metabolite distributions in biosynthetic pathways by non-targeted metabolite profiling and bioactive correlation analysis. Principal component analysis revealed a distinct clustering pattern of metabolites for each berry. Metabolic pathway analysis revealed different biosynthetic routes of secondary metabolites in each berry. Mandarin melonberry contains a relatively higher proportion of genistein, genistein glycoside, and genistein-derived isoflavonoids and prenylflavonoids than the other berries. Various anthocyanin glycosides, synthesized from dihydroquercetin and cyanidin, were more abundant in chokeberry and honeyberry, whereas high levels of flavonoid-and anthocyanins-rutinoside forms were observed in Korean black raspberry. The levels of anthocyanins derived from dihydromyricetin were high in blueberry. The highest anti-oxidant activity was observed in chokeberry and Korean black raspberry, which is positively related to the proportional concentration of flavonoids, phenolics, and anthocyanins. The lowest sugar contents were observed in Korean black raspberry, highest acidity in honeyberry, and lowest acidity in mandarin melonberry, which were specific characteristics among the berries. Taken together, biosynthetic pathway and physicochemical characteristics analyses revealed that the different synthesized routes of flavonoids and anthocyanins and associated bio-activities may be distinct features in each berry and explain their phenotypic diversity at the molecular level
The Effects of Loranthus parasiticus
This study is undertaken to evaluate cognitive enhancing effect and neuroprotective effect of Loranthus parasiticus. Cognitive enhancing effect of Loranthus parasiticus was investigated on scopolamine-induced amnesia model in Morris water maze test and passive avoidance test. We also examined the neuroprotective effect on glutamate-induced cell death in HT22 cells by MTT assay. These results of Morris water maze test and passive avoidance test indicated that 10 and 50 mg/kg of Loranthus parasiticus reversed scopolamine-induced memory deficits. Loranthus parasiticus also protected against glutamate-induced cytotoxicity in HT22 cells. As a result of in vitro test for elucidating possible mechanism, Loranthus parasiticus inhibited AChE activity, ROS production, and Ca2+ accumulation. Loranthus parasiticus showed memory enhancing effect and neuroprotective effect and these effects may be related to inhibition of AChE activity, ROS level, and Ca2+ influx
Mapping regional funding for COVID-19 research in the Asia-Pacific region
Introduction: The Global Research Collaboration for Infectious Disease Preparedness (GloPID-R) is a network of funders supporting research on infectious diseases of epidemic/pandemic potential. GloPID-R is establishing regional hubs to strengthen stakeholder engagement particularly among low-income and middle-income countries. The first pilot hub, led from Republic of Korea (South Korea), has been launched in the Asia-Pacific region, a region highly prone to outbreaks of emerging infectious diseases. We present findings of mapping research undertaken in support of the hub’s development.
Methods: We analysed five COVID-19 research databases in September 2022 to identify research funders and intermediary funding sources supporting research in infectious diseases in the Asia-Pacific region. This was complemented with an in-depth analysis of the UK Collaborative on Development Research (UKCDR) and GloPID-R COVID-19 Research Project Tracker to assess the alignment of funded projects in the region to the WHO COVID-19 research priorities.
Results: We identified 453 funders and funding sources supporting COVID-19 research in the Asia-Pacific Region including public, private and philanthropic organisations and universities. However, these organisations were clustered in few countries in the region. The in-depth analysis of the UKCDR and GloPID-R COVID-19 Research project Tracker found limited research involving Asia-Pacific countries with the 117 funders supporting these projects investing at least US$604m in COVID-19 research in the region. Social Sciences was the dominant theme on which funded projects focused whereas the priority areas with the least number of projects were research on ‘animal and environmental health’ and ‘ethics considerations for research’.
Conclusion: Our analyses show the diversity of funding sources for research on infectious diseases in the Asia-Pacific region. Engagement between multiple actors in the health research system is likely to promote enhanced coordination for greater research impact. GloPID-R’s Asia-Pacific regional hub aims to support activities for the enhancement of preparedness for outbreaks of emerging infectious diseases in the region
Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists.
UnlabelledAlthough adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics.SignificanceAlthough stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics
Inorganic Arsenite Potentiates Vasoconstriction through Calcium Sensitization in Vascular Smooth Muscle
Chronic exposure to arsenic is well known as the cause of cardiovascular diseases such as hypertension. To investigate the effect of arsenic on blood vessels, we examined whether arsenic affected the contraction of aortic rings in an isolated organ bath system. Treatment with arsenite, a trivalent inorganic species, increased vasoconstriction induced by phenylephrine or serotonin in a concentration-dependent manner. Among the arsenic species tested—arsenite, pentavalent inorganic species (arsenate), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V))—arsenite was the most potent. Similar effects were also observed in aortic rings without endothelium, suggesting that vascular smooth muscle plays a key role in enhancing vasoconstriction induced by arsenite. This hypercontraction by arsenite was well correlated with the extent of myosin light chain (MLC) phosphorylation stimulated by phenylephrine. Direct Ca(2+) measurement using fura-2 dye in aortic strips revealed that arsenite enhanced vasoconstriction induced by high K(+) without concomitant increase in intracellular Ca(2+) elevation, suggesting that, rather than direct Ca(2+) elevation, Ca(2+) sensitization may be a major contributor to the enhanced vasoconstriction by arsenite. Consistent with these in vitro results, 2-hr pretreatment of 1.0 mg/kg intravenous arsenite augmented phenylephrine-induced blood pressure increase in conscious rats. All these results suggest that arsenite increases agonist-induced vasoconstriction mediated by MLC phosphorylation in smooth muscles and that calcium sensitization is one of the key mechanisms for the hypercontraction induced by arsenite in blood vessels
Cognitive Enhancing and Neuroprotective Effect of the Embryo of the Nelumbo nucifera
The aim of the present study was to evaluate the effect of ENS on cognitive impairment induced by scopolamine and its potential neuroprotective effect against glutamate-induced cytotoxicity in HT22 cell and to investigate the underlying mechanisms. ENS (3, 10, 30, and 100 mg/kg), scopolamine (1 mg/kg), and donepezil (1 mg/kg) were administered to mice during a test period. Scopolamine impaired memory and learning in a water maze test and a passive avoidance test. The neuroprotective effect of ENS (10 and 100 μg/mL) was investigated on glutamate-induced cell death in HT22 cells by MTT assay. We investigated acetylcholinesterase inhibition in hippocampus and antioxidant activity, ROS levels, and Ca2+ influx in HT22 cells to elucidate the potential mechanisms of ENS. We found that ENS significantly ameliorated scopolamine-induced memory impairment and inhibited AChE activity in hippocampus. In vitro, ENS showed potent neuroprotective effects against glutamate-induced neurotoxicity in the HT22 cell. In addition, ENS induced a decrease in ROS production and intercellular Ca2+ accumulation and showed DPPH radical and H2O2 scavenging activity. In conclusion, ENS showed both a memory improving effect and a neuroprotective effect. Our results indicate that ENS may be of use in the treatment and prevention of neurodegenerative disorders
- …