602 research outputs found

    Distinguishing Six Edible Berries Based on Metabolic Pathway and Bioactivity Correlations by Non-targeted Metabolite Profiling

    Get PDF
    Berries have been used as valuable sources of polyphenols for human health; however, injudicious uses of berries are widespread without regard to the specific metabolite constituent of each berry. We classified 6 different edible berries (honeyberry, blueberry, mandarin melonberry, mulberry, chokeberry, and Korean black raspberry) based on their metabolite distributions in biosynthetic pathways by non-targeted metabolite profiling and bioactive correlation analysis. Principal component analysis revealed a distinct clustering pattern of metabolites for each berry. Metabolic pathway analysis revealed different biosynthetic routes of secondary metabolites in each berry. Mandarin melonberry contains a relatively higher proportion of genistein, genistein glycoside, and genistein-derived isoflavonoids and prenylflavonoids than the other berries. Various anthocyanin glycosides, synthesized from dihydroquercetin and cyanidin, were more abundant in chokeberry and honeyberry, whereas high levels of flavonoid-and anthocyanins-rutinoside forms were observed in Korean black raspberry. The levels of anthocyanins derived from dihydromyricetin were high in blueberry. The highest anti-oxidant activity was observed in chokeberry and Korean black raspberry, which is positively related to the proportional concentration of flavonoids, phenolics, and anthocyanins. The lowest sugar contents were observed in Korean black raspberry, highest acidity in honeyberry, and lowest acidity in mandarin melonberry, which were specific characteristics among the berries. Taken together, biosynthetic pathway and physicochemical characteristics analyses revealed that the different synthesized routes of flavonoids and anthocyanins and associated bio-activities may be distinct features in each berry and explain their phenotypic diversity at the molecular level

    Joint Carrier Fequency Synchronization and Channel Estimation for OFDM Systems Via the EM Algorithm

    Get PDF
    A joint carrier frequency synchronization and channel estimation scheme is proposed for orthogonal frequencydivision multiplexing (OFDM) system. In the proposed scheme, carrier frequency synchronization and channel estimation are performed iteratively via the expectation–maximization (EM) algorithm using an OFDM preamble symbol. Moreover, we analytically investigate the effect of frequency offset error on the mean square error (MSE) performance of channel estimator. Simulation results present that the proposed scheme achieves almost ideal performance for both channel and frequency offset estimation.This work was supported by the University IT Research Center Project and the Brain Korea 21 Project

    Gastric Schwannoma

    Get PDF
    Schwannomas, also known as neurinomas or neurilemmomas, are generally benign, slow-growing neoplasms originating in any nerve that has a Schwann cell sheath. These neoplasms are rare among the spindle cell mesenchymal tumors of the gastrointestinal tract, but develop most commonly in the stomach representing 0.2% of all gastric tumors. We present the case of a 57-year-old female patient with a large schwannoma in the stomach that was palpable in the abdomen. She underwent subtotal gastrectomy under suspicion of gastrointestinal stromal tumor (GIST), but post-operative histopathological and immunohistochemical findings showed a fascicular arrangement of spindle cell with pallisading nuclei, and positive for S-100 protein with negative smooth muscle actin (SMA). These results confirmed schwannoma as the diagnosis

    Inorganic Arsenite Potentiates Vasoconstriction through Calcium Sensitization in Vascular Smooth Muscle

    Get PDF
    Chronic exposure to arsenic is well known as the cause of cardiovascular diseases such as hypertension. To investigate the effect of arsenic on blood vessels, we examined whether arsenic affected the contraction of aortic rings in an isolated organ bath system. Treatment with arsenite, a trivalent inorganic species, increased vasoconstriction induced by phenylephrine or serotonin in a concentration-dependent manner. Among the arsenic species tested—arsenite, pentavalent inorganic species (arsenate), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V))—arsenite was the most potent. Similar effects were also observed in aortic rings without endothelium, suggesting that vascular smooth muscle plays a key role in enhancing vasoconstriction induced by arsenite. This hypercontraction by arsenite was well correlated with the extent of myosin light chain (MLC) phosphorylation stimulated by phenylephrine. Direct Ca(2+) measurement using fura-2 dye in aortic strips revealed that arsenite enhanced vasoconstriction induced by high K(+) without concomitant increase in intracellular Ca(2+) elevation, suggesting that, rather than direct Ca(2+) elevation, Ca(2+) sensitization may be a major contributor to the enhanced vasoconstriction by arsenite. Consistent with these in vitro results, 2-hr pretreatment of 1.0 mg/kg intravenous arsenite augmented phenylephrine-induced blood pressure increase in conscious rats. All these results suggest that arsenite increases agonist-induced vasoconstriction mediated by MLC phosphorylation in smooth muscles and that calcium sensitization is one of the key mechanisms for the hypercontraction induced by arsenite in blood vessels

    Case Report and Review of Literature: Autosomal Recessive Hypophosphatemic Rickets Type 2 Caused by a Pathogenic Variant in ENPP1 Gene

    Get PDF
    Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is a rare form of hereditary rickets, which is characterized by defective bone mineralization and renal phosphate wasting due to a loss-of-function variant in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene. Although pathogenic variant of ENPP1 has been known to manifest other phenotypes including arterial calcification, hearing loss, ossification of posterior longitudinal ligament, or pseudoxanthoma elasticum, there have been few reports including systematic examination in individuals diagnosed with ARHR2 to date. Herein, we report a case of ARHR2 with a bi-allelic pathogenic variant of ENPP1, in which the patient presented with gait abnormalities with severe genu varum at 26 months of age. Targeted gene panel sequencing was performed to investigate the genetic cause of rickets, and a homozygous nonsense variant in ENPP1, c.783C>G (p.Tyr261*), was identified. The patient was treated with oral phosphate and active vitamin D supplements and underwent corrective osteotomy for varus deformity. His phenotype was limited to rickets. A periodic systematic evaluation is needed to identify any comorbidities in ARHR2 patients since ENPP1 variants may present phenotypes other than rickets and symptoms may evolve or change over time

    Lanczos exact diagonalization study of field-induced phase transition for Ising and Heisenberg antiferromagnets

    Full text link
    Using an exact diagonalization treatment of Ising and Heisenberg model Hamiltonians, we study field-induced phase transition for two-dimensional antiferromagnets. For the system of Ising antiferromagnet the predicted field-induced phase transition is of first order, while for the system of Heisenberg antiferromagnet it is the second-order transition. We find from the exact diagonalization calculations that the second-order phase transition (metamagnetism) occurs through a spin-flop process as an intermediate step.Comment: 4 pages, 4 figure
    corecore