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Joint Carrier Frequency Synchronization and Channel
Estimation for OFDM Systems Via the EM Algorithm
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Abstract—A joint carrier frequency synchronization and chan-
nel estimation scheme is proposed for orthogonal frequency-
division multiplexing (OFDM) system. In the proposed scheme,
carrier frequency synchronization and channel estimation are per-
formed iteratively via the expectation—-maximization (EM) algo-
rithm using an OFDM preamble symbol. Moreover, we analyti-
cally investigate the effect of frequency offset error on the mean
square error (MSE) performance of channel estimator. Simula-
tion results present that the proposed scheme achieves almost ideal
performance for both channel and frequency offset estimation.

Index Terms—Channel estimation, expectation—-maximization
(EM), frequency synchronization, orthogonal frequency-division
multiplexing (OFDM).

I. INTRODUCTION

RTHOGONAL frequency-division multiplexing
(OFDM) is an attractive technique to support high-rate
data transmission over frequency-selective fading channels.
However, it is known to be very sensitive to the frequency
synchronization and channel estimation errors [1]. Carrier
frequency offset induced by the mismatches of local oscillators
in transmitter and receiver causes intercarrier interferences
(ICI), which may result in significant performance degradation.
Moreover, the coherent detection of OFDM signals requires
channel estimation to mitigate amplitude and phase distortions
in a fading channel. For the differential detection, however, it
is known that the channel estimation is not needed, although it
results in the 3-dB loss of signal-to-noise ratio (SNR) [2]-[4].
Several carrier frequency synchronization schemes for
OFDM systems are reported in the literature [5]-[9]. In [5]
and [6], synchronization is achieved using the redundancy of
the cyclic prefix. The synchronization schemes proposed in [7]
and [8] employs the maximum length sequence in frequency
domain. In [9], the pseudo noise (PN)-based preamble in time-
domain is used to achieve the frequency synchronization. More-
over, various channel estimation schemes for OFDM system
are also studied in the papers [2]-[4]. Especially, [4] studied
and analyzed the performance of the minimum mean square
error (MMSE) and deterministic maximum likelihood (ML)
estimators.
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The joint frequency offset and channel estimation issue is also
highlighted in [10] and [11]. To obtain the ML solutions for both
frequency offset and channel impulse response (CIR), the pro-
hibitive computational complexity is required [12]. Therefore,
in [10], the ML estimate for only frequency offset was obtained
based on the least square (LS) CIR estimate. In [11], an adap-
tive approach (i.e., steepest descent algorithm) was employed
to avoid the complexity of joint ML estimation. However, it is
known that the expectation-maximization (EM) algorithm [13]
can provide the ML solutions in an iterative manner for the joint
ML estimation problem [12], [14]. In this paper, we propose
the joint carrier frequency synchronization and channel estima-
tion scheme based on the EM algorithm employing an OFDM
preamble symbol to perform joint frequency synchronization
and channel estimation iteratively. Expectation and maximiza-
tion steps in this scheme provide both channel and frequency
offset estimates, respectively.

The rest of this paper is organized in the following order.
In Section II, we describe the OFDM system to be consid-
ered. In Section III, the joint carrier frequency synchronization
and channel estimation scheme via EM algorithm is proposed.
Section IV presents the Cramer—Rao bound (CRB) for channel
and frequency offset estimator and analyzes how the estimation
error of carrier frequency offset affects the mean square error
(MSE) performance of channel estimator. Section V presents
simulation results for the MSE performance of the proposed al-
gorithm over frequency selective fading channels. Concluding
remarks are given in Section VI.

II. SYSTEM MODEL

Let N be the number of subcarriers and P be the number of
modulated subcarriers. Note that N-P subcarriers at the edges
of the spectrum (i.e., virtual sub carriers) are not used and the
modulated subcarriers can be indexed by the numbers from
—P/2to P/2. Assuming ideal synchronization in time [15], the
received signal vector over a frequency-selective fading channel
can be expressed as

r=Q,FADh+w (D)

where the normalized frequency offset v is presented in the
matrix 2, given by

Q, :diag{ﬂu(0)7ﬂv(l)7"'7QU(N_ 1)} (2)

and

Q,(n) = exp <]2]7\T;}n) . 3)
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In (1), A =diag{a_p/2,...,00,...ap/2} denotes a diago-
nal transmitted symbol matrix in the preamble and [F], , =
(1/v/N)exp(j(2mp/Nn)), where 0 < n < N, and |p| < P/2.

Moreover, the CIR vector h = [h(0) h(1) --- h(L —1)]*
is a wide-sense stationary process with L multipaths [16] and
the discrete Fourier transform (DFT) matrix is given as [D],, ; =
exp(—j(2mp/N)(l — 1)), where 1 <[ < L. The additive white
Gaussian noise vector w = [w(0) w(1) -+ w(N —1)]* has
the covariance matrix of 012” Iy, where Iy denotes a N x N
identity matrix.

III. JOINT FREQUENCY SYNCHRONIZATION
AND CHANNEL ESTIMATION

The EM algorithm is an iterative two-step algorithm that
consists of the expectation step and the maximization step. The
EM algorithm iterates until the estimate converges [13], [14].

Assuming the coarse frequency offset estimate v, is obtained,
the log-likelihood function can be expressed as

L(ve [vl) =Re{r"Q, @, Syj} 4)

where (-)¥ denotes conjugated transpose and we define S =
FAD for simplicity. Moreover, v, in (4) denotes the frequency
offset estimation error v — v,., and v; is the estimate of v, at the
ith iteration. Assuming each component of the CIR vector h in
(1) is an independent complex Gaussian random variable with
zero mean [21], the channel estimate at the 4th iteration u}lb can
be obtained by

u, =F [h |r,vé]
=K, 8"l Qllr 5)

i
vl

where K, is defined by
K, =Re (2R, +878)™" 6)

and R;, = E[hh'’]. Consequently, the result in (5) is equiva-
lent to the MMSE estimate [4]. The derivation of the previous
equations is summarized in Appendix I. In the expectation step,
the conditional first moment of CIR given r and v in (5) should
be evaluated.

Note that the CIR length L should be known to construct S
in (4). The exact value of L is usually not available, and we
assumed that the receiver has the estimate of L, which can be
treated as a predetermined parameter considering the maximum
expected CIR length [22]. When the estimate of L is greater than
the CIR length, we can estimate all multipaths in the CIR, while
the large dimension of the matrix S induces unnecessary calcu-
lation in (5). However, it might be effective that the estimate of
L is less than the exact CIR length in less dispersed multipath
channel, where the last taps of CIR are relatively small and neg-
ligible. Here, we simply assume the case where the estimate of
L is equal to the CIR length.

The maximization step, which is used for the (¢ + 1)th esti-
mate v’ 1, can be represented by

vi“ = argmax L (ve | Uﬁ) . @)

Ve

The log-likelihood function in (4) can be modified into the

following equation using Sfl = [S; (0) Sfl(l) S/i‘ (N —
1)]” shown as
= 21V
L (Ue | V! ) = Z Re{r*(n)SﬁL (n)Qy, (n)exp (j N€ n> }
n=0
(®)

where S/, = Spj,. However, it is too complicated to obtain an
exact solution of vi*! to maximize the likelihood function in
(8) [17]. Therefore, we assume v, is sufficiently small to ap-
proximate exp(j(2mwv. /N)n) by Taylor series expansion to the
second-order term:

270, 20, 1 [ 270, \?
exp ]Tn ~14 N n—§ J N nl .

Then, the likelihood function L(v. |v!) can be given in the
quadratic form of v shown as

9 N-1
L(ve |v)) =~ =v? <§vﬁ2 Z n2Re {T*(n)SL (n)S, (n)})

n=0

=

o N-1 )
— U, ( S~ nlm {7 (n) S, (1)<, (n)})
n=0

N-1
+ Z Re {r* (n)SL (n), (n)} )

n=0
and the (i + 1)th estimate v! ! to maximize (9) is obtained by

Uv’,—i—l — _ﬁ ZnNz_Ol nlm {T* (’I”L)SL (n)Qv(: (n)} )
‘ 27 Zi::ol n?Re {r* (n)Si (n)Q, (n)}

(10)

In (5) and (10), it is seen that the proposed algorithm iteratively
provides the CIR estimate in expectation step and the frequency
synchronization in maximization step via the EM algorithm.

The computational complexity of the proposed scheme can
be addressed as follows. Assuming K,S? in (5) is precom-
puted, the expectation step requires (L + 2)N complex prod-
ucts and L(/N — 1) complex additions. In the maximization step,
(L 4+ 2)N complex products and (L — 1) N complex additions
are required to evaluate S}, and {r*(n)S}, ()2, (n);0 < n <
N}. Moreover, in (10), we need 3N real products and 2(N — 1)
real additions. Note that a complex product requires four real
products and two real additions, whereas a complex addition
amounts to two real additions. Then, the overall number of
real products and real additions in the expectation step can be
given as 4(L + 2)N and 4(LN + N — 1), respectively. Also,
the overall operations in the maximization step are (4L + 11)N
real products and 2(LN + 3N — 2) real additions.

IV. PERFORMANCE ANALYSIS

In this section, the CRB is derived for both the CIR and the
frequency offset estimator of the OFDM system, and the effect
of frequency offset error on the MSE performance of the channel
estimator is analyzed.
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The CRB for the CIR estimation with ideal carrier frequency
synchronization (v = 0) is given by

L

CRB;, = Y o2[(S"8) ], (11)
=1

The CRB for the carrier frequency offset estimation can be

represented by

0.2

CRB, = 2xH Iy — S(SHS)-1SH]x
wheren = diag{0, 27 /N, 4w /N,...,2nr(N — 1)/N},andx =
nSh. The detailed derivation of (11) and (12) is given in
Appendix II.

The frequency synchronization error influences the channel
estimation accuracy. In the proposed scheme, the imperfect car-
rier frequency synchronization also induces the CIR estimation
error as shown in (5). Therefore, we analytically investigate the
MSE performance of CIR estimator affected by the estimation
error of carrier frequency offset.

The MSE of the proposed CIR estimate in (5) can be repre-
sented by

(12)

MSE}, = £ ||, —b[’] . (13)

Substituting (5) into (13) and taking into account (1), we obtain
MSE;, = E[|(K,S" (Iy +&,..)S —I;)h|?]

+ B [[KiS7 0l w’] (14)
where ¢! = v, —vl, and Iy, is a L x L identity matrix. More-
over, &, = diag{&,:(0),&.:(1),...,&.i (N — 1)} can be evalu-
atedby £, = Q. —Iy.

In case of ideal frequency synchronization (e! = 0), £,; in
(14) would be zero. Assuming the components of h vary in-
dependently, we can obtain the MSE of CIR estimate in ideal
frequency synchronization case shown as

L

MSEj!*! = Z [Fﬁcﬂridcal}l_l R 1
=1

N
§ : 2 H
+ Ow [FnoiseFHOiSC] n,n

n=1

where Tigeal = K, S”S —1I;, and Thoie = K, S, In the
presence of frequency offset, however, the additional MSE due
to frequency synchronization error is generated shown as

MSE], = MSE}d°!

5)

L
—+ Z [2Re {I‘ﬁealI‘ermr} + I‘gmrrerror]l’l [Rh]l,l
=1

(16)

where Torpor = K, S7E,:S.

Fig. 1(a) shows the required SNR to achieve MSE], = 10~*
and MSE/, = 1072 in (16) according to the frequency syn-
chronization error ¢’. It is seen that the required SNR for
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Fig. 1. MSE performance analysis based on (16) at N =64 and L = 4.

(a) Required SNR to achieve MSE}, = 107! and MSE}, = 10~2 in the pres-
ence of e’. (b) Comparison of MSE;L and MSE}Ldeal for different values
of €.

both MSE;, = 10~! and MSE}, = 10~2 grows exponentially as
the frequency synchronization error increases. For e’ = 0.1,
the additional SNR more than 10 dB is needed to achieve
MSE}, = 10! compared with the required SNR for ideal fre-
quency synchronization. Moreover, we cannot even obtain the
MSE], of 1072 when €' is greater than 0.03. Fig. 1(b) presents
the MSE performance evaluated by (16) versus SNR for differ-
ent values of frequency synchronization error ¢’. It is seen that
the MSE performance is significantly degraded as frequency
synchronization error increases slightly.

V. SIMULATION RESULTS

System parameters in our simulations follow the IEEE
802.11a standard [20], where the DFT size N and the number
of modulated sub carriers P equal 64 and 52, respectively. We
consider frequency-selective fading channels with exponential
power delay profile given by E[|h(1)[]? oc e~ (=2)/4 1 <1 < L.
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Fig. 2. MSE performance of frequency offset estimator versus number of
iterations at normalized frequency offset v = —0.3.

Each multipath is modeled as a zero-mean complex Gaussian
random variable; so, it varies according to Rayleigh distribution
in mobile environments [21]. Moreover, we obtained the coarse
frequency offset estimate v, using the redundancy generated by
the cyclic prefix [6]. To start the iteration of proposed algorithm,
we set the initial estimate v0 = 0.

In Fig. 2, the MSEs of the frequency offset estimator versus
the number of iterations were depicted. It is shown that the
MSE performance of the proposed frequency offset estimator
converges after three iterations at the SNR of 10 dB, while it is
improved continually until the number of iterations increases to
seven for the SNR values greater than 10 dB.

Fig. 3 compares the MSE performance of proposed algorithm
with CRB,, in (12). Note that the CRB varies according to the
channel state [18], and the minimum and maximum CRB,, in
the figures are evaluated by 10° simulation runs. The MSE per-
formance of proposed algorithm is quite comparable to CRB,,
in all ranges of SNR. However, in high SNR above 20 dB, the
proposed scheme needs seven iterations to guarantee the im-
proved performance over the maximum CRB,, for both cases of
L = 5 and 10. Moreover, the SNR gain of the proposed scheme
is more than 5 dB compared with the conventional cyclic pre-
fix based estimator [6] at the MSE of 10~%. It is also observed
that the error floor of the conventional scheme is significantly
suppressed by the proposed algorithm in high SNR.

In Fig. 4, the simulated MSE performance of channel estima-
tor in (5) are presented and compared with the CRB;, in (11)
and MSE!%°®! in (15). The MSE performance of conventional
MMSE estimator [4] is obtained after the frequency synchro-
nization using the cyclic prefix. Itis seen that the channel estima-
tor of the proposed algorithm shows almost ideal performance
and the proposed joint frequency synchronization and channel
estimation algorithm outperforms the conventional scheme in
all ranges of SNR. Especially for high SNR greater than 20 dB,
seven iterations should be operated to achieve almost ideal MSE
performance, as shown in Fig. 4.
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MSE
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Fig.3. Comparisons of MSE performance for frequency offset estimate versus
SNR at the normalized frequency offset v = 0.2. (a) L = 5. (b) L = 10.
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Fig. 4. MSE performance of channel estimator versus SNR at normalized
frequency offset v = —0.1 and L = 5.
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VI. CONCLUSION

In this paper, we proposed a joint carrier frequency synchro-
nization and channel estimation scheme for OFDM systems
based on the EM algorithm. In the proposed scheme, expecta-
tion and maximization steps provide both channel and carrier
frequency offset estimates iteratively using an OFDM preamble
symbol. The simulation results show that the proposed algorithm
achieves almost ideal performance compared with the CRB for
both channel and frequency offset estimations.

APPENDIX 1

In this Appendix, we highlight the derivation of expectation
step for proposed algorithm. In (1), the likelihood function can
be given as

A(r;h,v)

1 1
= Wexp (—02 (r—Q,Sh)" (r - QUSh)> . (17)

w w

In the ith iteration of proposed algorithm given v, and v, the
log-likelihood function for v, can be obtained by logarithm of
(17). Discarding the terms without dependency on v, we can
obtain (4). To evaluate the channel estimate in 4th iteration uﬁl,
we consider the following probability density functions:

p(r|hv)) ~ N (92,9, Sh, o 1y)
p(h) ~ NC(07 Rh)

p(hr,vl) ~ N, (i), Bn) (18)

where =;, denotes the covariance matrix of h conditioned on
r and ’Ué Moreover, 0 denotes the L x 1 vector with all zero
entries. Bearing in mind that the channel statistic is independent
of the frequency offset and employing the relation of

p(r |h,v})p(h)

p (h r,v(i3 = , (19)
(v = )
we can obtain
i i: sl ol
Hh ) —h Ve 1)(1‘
O.UJ ‘
—_ -1 1 o -
=) = h + 0_728 S . (20)

If K, = (1/02)E), is defined, (20) yields (8) and (9).

APPENDIX II

The CRB of the channel and frequency offset estimator is
evaluated in this Appendix, where we modify the work in [18]
for the OFDM system. In the case of ideal frequency syn-
chronization, v = 0 in (17), and we define a 2L x 1 vector
pn, = (hr,hg), where h = h; + jhg. Then, the Fisher infor-

mation matrix [19] can be given as

2

(@) = —F [82 In A(r; py) }

8ph (l)aph (m)
where 1 < [, m < 2L. Substituting (17) into (21), we can obtain

2 [sfs 0

2
gy

Note that all entries of S S in (22) are real value. Then, the
CRB for the channel estimation can be obtained by the inversion
of ®;, given by

(23)

2 H -1
q,/:l — Jw |:(S S) 0 :|

2 0 (SH#8)-1

and the CRB for the estimation of the /th multipath is obtained
by
CRB), = 2 [(S7S) 1], (24)
For the CRB of frequency offset estimator, we define a
(2L + 1) x 1 vector p = (hy, hg,v), including the frequency
offset v [18], and evaluate the Fisher information matrix shown
as

9 SS 0 ~Im{S”x}
®=— 0 SfS Re{Sx} (25)
o | Im{x”S} Re{x”S} xx

wheren) = diag{0, 2w /N, 4n/N,...,2n(N — 1)/N},andx =
7nSh. The CRB for frequency offset estimation is given by

CRB, = [® ar 412141

0.2

T 2xA[Iy — S(gHS)*SH}x' (26)
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