30 research outputs found

    Serial interferon-gamma release assays during treatment of active tuberculosis in young adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of interferon-γ release assay (IGRA) in monitoring responses to anti-tuberculosis (TB) treatment is not clear. We evaluated the results of the QuantiFERON-TB Gold In-tube (QFT-GIT) assay over time during the anti-TB treatment of adults with no underlying disease.</p> <p>Methods</p> <p>We enrolled soldiers who were newly diagnosed with active TB and admitted to the central referral military hospital in South Korea between May 1, 2008 and September 30, 2009. For each participant, we preformed QFT-GIT assay before treatment (baseline) and at 1, 3, and 6 months after initiating anti-TB medication.</p> <p>Results</p> <p>Of 67 eligible patients, 59 (88.1%) completed the study protocol. All participants were males who were human immunodeficiency virus (HIV)-negative and had no chronic diseases. Their median age was 21 years (range, 20-48). Initially, 57 (96.6%) patients had positive QFT-GIT results, and 53 (89.8%), 42 (71.2%), and 39 (66.1%) had positive QFT-GIT results at 1, 3, and 6 months, respectively. The IFN-γ level at baseline was 5.31 ± 5.34 IU/ml, and the levels at 1, 3, and 6 months were 3.95 ± 4.30, 1.82 ± 2.14, and 1.50 ± 2.12 IU/ml, respectively. All patients had clinical and radiologic improvements after treatment and were cured. A lower IFN-γ level, C-reactive protein ≥ 3 mg/dl, and the presence of fever (≥ 38.3°C) at diagnosis were associated with negative reversion of the QFT-GIT assay.</p> <p>Conclusion</p> <p>Although the IFN-γ level measured by QFT-GIT assay decreased after successful anti-TB treatment in most participants, less than half of them exhibited QFT-GIT reversion. Thus, the reversion to negativity of the QFT-GIT assay may not be a good surrogate for treatment response in otherwise healthy young patients with TB.</p

    High-dose clevudine impairs mitochondrial function and glucose-stimulated insulin secretion in INS-1E cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clevudine is a nucleoside analog reverse transcriptase inhibitor that exhibits potent antiviral activity against hepatitis B virus (HBV) without serious side effects. However, mitochondrial myopathy has been observed in patients with chronic HBV infection taking clevudine. Moreover, the development of diabetes was recently reported in patients receiving long-term treatment with clevudine. In this study, we investigated the effects of clevudine on mitochondrial function and insulin release in a rat clonal β-cell line, INS-1E.</p> <p>Methods</p> <p>The mitochondrial DNA (mtDNA) copy number and the mRNA levels were measured by using quantitative PCR. MTT analysis, ATP/lactate measurements, and insulin assay were performed.</p> <p>Results</p> <p>Both INS-1E cells and HepG2 cells, which originated from human hepatoma, showed dose-dependent decreases in mtDNA copy number and cytochrome c oxidase-1 (Cox-1) mRNA level following culture with clevudine (10 μM-1 mM) for 4 weeks. INS-1E cells treated with clevudine had reduced total mitochondrial activities, lower cytosolic ATP contents, enhanced lactate production, and more lipid accumulation. Insulin release in response to glucose application was markedly decreased in clevudine-treated INS-1E cells, which might be a consequence of mitochondrial dysfunction.</p> <p>Conclusions</p> <p>Our data suggest that high-dose treatment with clevudine induces mitochondrial defects associated with mtDNA depletion and impairs glucose-stimulated insulin secretion in insulin-releasing cells. These findings partly explain the development of diabetes in patients receiving clevudine who might have a high susceptibility to mitochondrial toxicity.</p

    Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance

    Get PDF
    Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC
    corecore