4,224 research outputs found

    Complex Block Floating-Point Format with Box Encoding For Wordlength Reduction in Communication Systems

    Full text link
    We propose a new complex block floating-point format to reduce implementation complexity. The new format achieves wordlength reduction by sharing an exponent across the block of samples, and uses box encoding for the shared exponent to reduce quantization error. Arithmetic operations are performed on blocks of samples at time, which can also reduce implementation complexity. For a case study of a baseband quadrature amplitude modulation (QAM) transmitter and receiver, we quantify the tradeoffs in signal quality vs. implementation complexity using the new approach to represent IQ samples. Signal quality is measured using error vector magnitude (EVM) in the receiver, and implementation complexity is measured in terms of arithmetic complexity as well as memory allocation and memory input/output rates. The primary contributions of this paper are (1) a complex block floating-point format with box encoding of the shared exponent to reduce quantization error, (2) arithmetic operations using the new complex block floating-point format, and (3) a QAM transceiver case study to quantify signal quality vs. implementation complexity tradeoffs using the new format and arithmetic operations.Comment: 6 pages, 9 figures, submitted to Asilomar Conference on Signals, Systems, and Computers 201

    Interactive solution-adaptive grid generation

    Get PDF
    TURBO-AD is an interactive solution-adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution-adaptive grid generation technique into a single interactive solution-adaptive grid generation package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties that had been encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on a unit square in the parametric domain, and the new adapted grid in the parametric domain is then mapped back to the physical domain. The grid adaptation is achieved by first adapting the control points to a numerical solution in the parametric domain using control sources obtained from flow properties. Then a new modified grid is generated from the adapted control net. This solution-adaptive grid generation process is efficient because the number of control points is much less than the number of grid points and the generation of a new grid from the adapted control net is an efficient algebraic process. TURBO-AD provides the user with both local and global grid controls

    MAG3D and its application to internal flowfield analysis

    Get PDF
    MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids

    Interactive solution-adaptive grid generation procedure

    Get PDF
    TURBO-AD is an interactive solution adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution adaptive grid generation technique into a single interactive package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on the unit square in the parametric domain, and the new adapted grid is then mapped back to the physical domain. The grid adaption is achieved by adapting the control points to a numerical solution in the parametric domain using control sources obtained from the flow properties. Then a new modified grid is generated from the adapted control net. This process is efficient because the number of control points is much less than the number of grid points and the generation of the grid is an efficient algebraic process. TURBO-AD provides the user with both local and global controls
    • …
    corecore