44 research outputs found

    Subnormal Peripheral Blood Leukocyte Counts Are Related to the Lowest Prevalence and Incidence of Metabolic Syndrome: Tianjin Chronic Low-Grade Systemic Inflammation and Health Cohort Study

    No full text
    Few studies have assessed the relationship between a subnormal inflammatory status and metabolic syndrome (MS). We therefore designed a cross-sectional and 5-year cohort study to evaluate how a subnormal peripheral blood leukocyte count is related to MS. Participants were recruited from Tianjin Medical University General Hospital-Health Management Centre. Both a baseline cross-sectional (n=46,179) and a prospective assessment (n=13,061) were performed. Participants without a history of MS were followed up for 5 years. Leukocyte counts and MS components were assessed at baseline and yearly during the follow-up. Adjusted logistic and Cox proportional hazards regression models were used to assess relationships between the categories of leukocyte counts and MS. The subnormal leukocyte counts group (1,100–3,900 cells/mm3) had the lowest prevalence and incidence of MS. The odds ratio and hazard ratio (95% confidence interval) of the highest leukocyte counts were 1.98 (1.57–2.49) and 1.50 (1.22–1.84) (both P for trend <0.0001), respectively, when compared to the subnormal leukocyte counts group after adjusting for potential confounders. This study has shown that subnormal leukocyte counts are independently related to the lowest prevalence and incidence of MS. The findings suggest that it is necessary to restudy and discuss the clinical or preventive value of subnormal leukocyte counts

    Automatically reconfigurable optical data center network with dynamic bandwidth allocation

    Get PDF
    The rapid increasing traffic in data centers (DCs) puts tremendous pressure to the present multi-tier network architectures and electrical switching techniques. Switching traffic in the optical domain featuring ultra-high bandwidth, therefore, has been intensively investigated to build the high capacity data center networks (DCNs). To handle the variable traffic pattern in DCs, the network reconfigurability with adaptable optical bandwidth allocation is of key importance to flexibly assign the optical bandwidth. To this end, we propose and experimentally evaluate a software-defined networking enabled reconfigurable optical DCN with dynamic bandwidth allocation in this work, based on novel optical top of racks exploiting a wavelength selective switch. Experimental assessments show that the proposed solution can automatically reallocate the optical bandwidth in real-time to adapt the dynamic traffic pattern. Compared with the conventional optical DCN with static bandwidth provision, the end-to-end latency performance of the reconfigurable scheme with adaptable bandwidth allocation improves of 58.3% and the average packet loss decreases one order of magnitude. Moreover, the reconfigurable optical DCN features deterministic latency performance, with much lower time variations of packets delivery completion. Based on the experimental parameters, the simulation platform is also built to validate the good scalability of the proposed reconfigurable DCN. Numerical results illustrate the negligible performance degradation (11%) as the network scales from 2560 to 40 960 servers

    Experimental Assessments of SDN-enabled Optical Polling Flow Control for Contention Resolution in Optical DCNs

    No full text
    Due to the lack of optical buffer, high packer loss caused by packet contention is one of the main challenges for the optical switching data centers (DCs). Flow control (FC) protocol employing electrical buffers at the top of racks (ToRs) and exploiting packet retransmission mechanism in case of contention has been extensively investigated to decrease the packet loss in optical DCs. However, the packet retransmission and the head-of-line (HOL) blocking in electrical buffers at substantial load traffic introduce extra latency and buffer-overflow that still cause packet loss. To overcome these issues, a novel contention resolution technique based on a software-defined networking (SDN) enabled optical polling flow control is proposed and experimentally assessed in this article. Experimental assessments show that the proposed contention resolution scheme achieves zero packet loss and 7.4 μs latency performance at the load of 0.4. In addition, we numerically modelled and investigated the scalability of the proposed contention resolution technique in a large scale DCN based on the experimental parameters. Results prove the excellent scalability performance of OPFC scheme, in which the packet loss increases from 2.1E-3 to 9.02E-3 and the average latency increases 5.17 μs at the load of 0.5 as the OPFC based network scales from 4 to 40960 servers

    Adjusted relationships of quartiles of immunoglobulin M to metabolic syndrome (males, n = 5,673)<sup>a</sup>.

    No full text
    a<p>BMI, body mass index; HDL, high-density lipoprotein-cholesterol.</p>b<p>Multiple logistic regression analysis.</p>c<p>Adjusted odds ratios (95% confidence interval) (all such values).</p>d<p>Adjusted for age, BMI, smoking status, drinking status, and family history of cardiovascular disease, hypertension, hyperlipidemia, and diabetes.</p>e<p>Adjusted for age, BMI, smoking status, drinking status, and family history of cardiovascular disease, hypertension, hyperlipidemia, and diabetes, and immunoglobulin A, and G.</p
    corecore