52 research outputs found

    Chicken cyclophilin A is an inhibitory factor to influenza virus replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of enhancing influenza resistance in domestic flocks is quite clear both scientifically and economically. Chicken is very susceptible to influenza virus. It has been reported that human cellular cyclophilin A (CypA) impaired influenza virus infection in 293T cells. Whether chicken CypA (chCypA) inhibits influenza virus replication is not known. The molecular mechanism of resistance in chicken to influenza virus remains to be studied.</p> <p>Results</p> <p>The chCypA gene was isolated and characterized in the present study. It contained an ORF of 498 bp encoding a polypeptide of 165 amino acids with an estimated molecular mass of 17.8 kDa sharing high identity with mammalian CypA genes. The chCypA demonstrated an anti-influenza activity as expected. ChCypA protein was shown to be able to specifically interact with influenza virus M1 protein. Cell susceptibility to influenza virus was reduced by over-expression of chCypA in CEF cells. The production of recombinant influenza virus A/WSN/33 reduced to one third in chCypA expressing cells comparing to chCypA absent cells. ChCypA was widely distributed in a variety of chicken tissues. It localized in cytoplasm of chicken embryo fibroblast (CEF) cells. Avian influenza virus infection induced its translocation from cytoplasm into nucleus. ChCypA expression was not significantly up-regulated by avian influenza virus infection. The present study indicated that chCypA was an inhibitory protein to influenza virus replication, suggesting a role as an intrinsic immunity factor against influenza virus infection.</p> <p>Conclusion</p> <p>The present data demonstrates that chCypA possesses anti-influenza virus activity which allows the consideration of genetic improvement for resistance to influenza virus in chickens.</p

    A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

    Full text link
    Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees

    Multidimensional proximities and interorganizational coinnovation performance: The roles of intraorganizational collaboration network inefficiency

    Get PDF
    In a gradually more interlinked world, the formation of collaborations with partners is increasingly regarded as an important driver for generating innovation. Although multidimensional proximities are important factors influencing interorganizational coinnovation performance, relevant empirical studies have not reached consistent conclusions. By focusing on organizational dyad and including intraorganizational collaboration network inefficiency as a moderating variable, we explore the effects of multidimensional proximities on interorganizational coinnovation performance. By reference to 5G patent data collected in China between 2011 and 2020, the research results based on the quadratic assignment procedure (QAP) model show that geographical proximity, cognitive proximity, and institutional proximity all improve interorganizational coinnovation performance

    Cyclosporin A Inhibits the Influenza Virus Replication through Cyclophilin A-Dependent and -Independent Pathways

    Get PDF
    The immunosuppressive drug cyclosporin A (CsA) has inhibitory effects on the replication of several viruses. The antiviral effects are through targeting the interaction between viral proteins and host factor cyclophilin A (CypA). CypA has been identified to interact with influenza A virus M1 protein and impair the early stage of the viral life cycle. In order to identify the effect of CsA on influenza virus replication, a CypA-depleted 293T cell line, which was named as 293T/CypAβˆ’, was constructed. The cytopathic effect (CPE) assay and the growth curve results indicated that CsA specifically suppressed the influenza A virus replication in a dose-dependent manner. CsA treatment had no effect on the viral genome replication and transcription but selectively suppressed the viral proteins expression. Further studies indicated that CsA could impair the nuclear export of viral mRNA in the absence of CypA. In addition, the antiviral activity of CsA was independent of calcineurin signaling. Finally, CsA could enhance the binding between CypA and M1. The above results suggested that CsA inhibited the replication of influenza A virus through CypA-dependent and -independent pathways

    Design and Verification of a Novel Triphibian Robot

    Full text link
    Multi-modal robots expand their operations from one working medium to another, land to air for example. The majorities of multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there are seldom research to date in the literature. Generally, locomotions in different working media, i.e. land, water and air, require different propelling actuators, and thus the triphibian system becomes bulky. To overcome this challenge, we proposed a triphibian robot and provide the robot with driving forces to perform all-terrain operations in an efficient way. A morphable mechanism is designed to enable the transition between different motion modes, and specifically a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed. Finally, a triphibian robot prototype is fabricated and tested in various working media with both mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions in future exploration tasks in various working scenarios.Comment: IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION,8 page

    Variation in brain connectivity during motor imagery and motor execution in stroke patients based on electroencephalography

    Get PDF
    ObjectiveThe objective of this study was to analyze the changes in connectivity between motor imagery (MI) and motor execution (ME) in the premotor area (PMA) and primary motor cortex (MA) of the brain, aiming to explore suitable forms of treatment and potential therapeutic targets.MethodsTwenty-three inpatients with stroke were selected, and 21 right-handed healthy individuals were recruited. EEG signal during hand MI and ME (synergy and isolated movements) was recorded. Correlations between functional brain areas during MI and ME were compared.ResultsPMA and MA were significantly and positively correlated during hand MI in all participants. The power spectral density (PSD) values of PMA EEG signals were greater than those of MA during MI and ME in both groups. The functional connectivity correlation was higher in the stroke group than in healthy people during MI, especially during left-handed MI. During ME, functional connectivity correlation in the brain was more enhanced during synergy movements than during isolated movements. The regions with abnormal functional connectivity were in the 18th lead of the left PMA area.ConclusionLeft-handed MI may be crucial in MI therapy, and the 18th lead may serve as a target for non-invasive neuromodulation to promote further recovery of limb function in patients with stroke. This may provide support for the EEG theory of neuromodulation therapy for hemiplegic patients

    Exploration of sleep function connection and classification strategies based on sub-period sleep stages

    Get PDF
    BackgroundAs a medium for developing brain-computer interface systems, EEG signals are complex and difficult to identify due to their complexity, weakness, and differences between subjects. At present, most of the current research on sleep EEG signals are single-channel and dual-channel, ignoring the research on the relationship between different brain regions. Brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas.MethodsPhase-locked value (PLV) is used to construct a functional connection network. The connection network is used to analyze the connection mechanism and brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion. Fourthly, the classification performance optimization strategy is used to discuss the impact of different frequency bands on sleep stage classification performance and to find the optimal frequency band. Finally, the brain function network is constructed by using the average value of the fusion features to analyze the interaction of brain regions in different frequency bands during sleep stages.ResultsThe experimental results have shown that when the number of sub-periods is 30, the Ξ± (8–13 Hz) frequency band has the best classification effect, The classification result after 10-fold cross-validation reaches 92.59%.ConclusionThe proposed algorithm has good sleep staging performance, which can effectively promote the development and application of an EEG sleep staging system

    Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein

    Get PDF
    Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein

    Cyclophilin E Functions as a Negative Regulator to Influenza Virus Replication by Impairing the Formation of the Viral Ribonucleoprotein Complex

    Get PDF
    The nucleoprotein (NP) of influenza A virus is a multifunctional protein that plays a critical role in the replication and transcription of the viral genome. Therefore, examining host factors that interact with NP may shed light on the mechanism of host restriction barriers and the tissue tropism of influenza A virus. Here, Cyclophilin E (CypE), a member of the peptidyl-propyl cis-trans isomerase (PPIase) family, was found to bind to NP and inhibit viral replication and transcription.In the present study, CypE was found to interact with NP but not with the other components of the viral ribonucleoprotein complex (vRNP): PB1, PB2, and PA. Mutagenesis data revealed that the CypE domain comprised of residues 137–186 is responsible for its binding to NP. Functional analysis results indicated that CypE is a negative regulator in the influenza virus life cycle. Furthermore, knock-down of CypE resulted in increased levels of three types of viral RNA, suggesting that CypE negatively affects viral replication and transcription. Moreover, up-regulation of CypE inhibited the activity of influenza viral polymerase. We determined that the molecular mechanism by which CypE negatively regulates influenza virus replication and transcription is by interfering with NP self-association and the NP-PB1 and NP-PB2 interactions.CypE is a host restriction factor that inhibits the functions of NP, as well as viral replication and transcription, by impairing the formation of the vRNP. The data presented here will help us to better understand the molecular mechanisms of host restriction barriers, host adaptation, and tissue tropism of influenza A virus
    • …
    corecore