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Background: As a medium for developing brain-computer interface systems, EEG

signals are complex and difficult to identify due to their complexity, weakness,

and differences between subjects. At present, most of the current research on

sleep EEG signals are single-channel and dual-channel, ignoring the research on

the relationship between different brain regions. Brain functional connectivity is

considered to be closely related to brain activity and can be used to study the

interaction relationship between brain areas.

Methods: Phase-locked value (PLV) is used to construct a functional connection

network. The connection network is used to analyze the connection mechanism and

brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into

multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on

the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion.

Fourthly, the classification performance optimization strategy is used to discuss the

impact of different frequency bands on sleep stage classification performance and

to find the optimal frequency band. Finally, the brain function network is constructed

by using the average value of the fusion features to analyze the interaction of brain

regions in different frequency bands during sleep stages.

Results: The experimental results have shown that when the number of sub-

periods is 30, the α (8–13 Hz) frequency band has the best classification effect, The

classification result after 10-fold cross-validation reaches 92.59%.

Conclusion: The proposed algorithm has good sleep staging performance, which

can effectively promote the development and application of an EEG sleep staging

system.
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electroencephalography (EEG), sleep stage, classification, brain functional connectivity,
phase-locked value (PLV)
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1. Introduction

With the development of society, more and more people
have the problem with sleep disorders, and how to diagnose
and intervene in early sleep disorders is particularly important
(Miyata et al., 2007; Younes, 2017). Although electroencephalography
(EEG), electrocardiogram (ECG), electromyogram (EMG), and other
physiological signals can be used for sleep staging (Yan et al.,
2019), EEG signals contain more information and can better reflect
the overall information. Sleep staging is the basis of sleep quality
assessment. The traditional EEG sleep stage division still requires
sleep experts to manually divide according to special brain waves and
duration (Ronzhina et al., 2012). The procedure is time-consuming,
laborious, and subject to subjective errors (Chapotot and Becq, 2010).
The automatic sleep staging method plays an important role in the
early diagnosis and intervention of sleep disorders.

In 1968, R&K (Wolpert, 1969) divided sleep into awake, rapid eye
movement (REM), and non-rapid eye movement (NREM) stages, of
which NREM is further subdivided into four stages: S1, S2, S3, and S4.
Because the S3 and S4 stages are similar, the American Academy of
Sleep Medicine (AASM) (Berry et al., 2012a) modified the R&K rule,
which used N1, N2, and N3 to represent the different stages of NREM,
and merged S3 and S4 into the N3 stage. Most studies interpret sleep
stages sequentially according to the 30 s recording frame, and if the
30 s is divided into multiple segments, some unique features may be
found. In the study of Diykh and Li (2016), the authors divided the
EEG signal period of the 30 s into 75 sub-periods and then extracted
12 statistical features from each sub-period. This study achieved 92%
classification of 6 sleep stages. Seo et al. (2020) used a convolutional
neural network (CNN) to extract features from signal sub-bands
and used bi-directional long short-term memory (BiLSTM) to learn
the temporal context of representative features. The features learned
from continuous signal sub-bands in this study can represent the
temporal characteristics of EEG signals, but important sleep-related
events may only appear in some special sub-bands (Weber et al.,
2021), so it is also necessary to consider the temporal characteristics
of EEG signals. Characteristics of learning different brain activities
in signaling sub-bands. An et al. (2021) mapped multiple signal
wavelets to the amplitude axis and the time axis, respectively, and
extracted statistical classification features from the mapped feature
information, The accuracy of the classification of sleep stages 5 and 6
sleep stages reached 89.18 and 88.42%. In summary, the key to EEG
sleep staging is how to obtain effective classification features and find
optimal features from EEG signals in multiple sub-periods.

To obtain effective classification features, researchers have
proposed many traditional feature extraction methods, which are
divided into the following four types: (1) time domain features.
(2) frequency domain features. (3) time-frequency domain features.
(4) nonlinear features. (Gunnarsdottir et al., 2018) extracted time-
domain and frequency-domain features from PSG signals, using data
from healthy people, and using a decision table classifier to classify
the extracted attributes, with an overall classification accuracy of
80.70%. da Silveira et al. (2016) used discrete wavelet transform
techniques to analyze the changes in sleep behavior in different
frequency ranges, extracted skewness, kurtosis, and variance features
from the corresponding input channels, and evaluated the ability of
random forest classifiers to distinguish different sleep stages. Tests
were carried out and the results showed an overall accuracy of 90%.
Zhu et al. (2014) proposed a sleep stage classification method based

on the time and frequency domain features of single-channel EEG
signals. EEG signals were mapped onto visibility maps and level maps
to detect gait-related movements, and the nine features extracted
from the input signal were forwarded to the support vector machines
(SVM) classifier that considers multiple sleep stages. The method
achieved 87.50% accuracy for the two-state sleep stage classification
problem. Tabar et al. (2021) used a bootstrapping method guided by
mutual information to partition sleep stages into a low-dimensional
feature space and used fewer features to classify sleep stages. In recent
years, deep learning methods have been widely used in sleep stage
classification. Seo et al. (2020) proposed a deep learning model intra-
and inter-epoch temporal context network (IITNet), for learning
intra and inter-epoch temporal context from raw single-channel
EEG for automatic sleep scoring, this model has been tested on the
Sleep-EDF, Montreal Archive of Sleep Studies (MASS), and Sleep
Heart Health Study (SHHS) datasets and obtained the accuracies
of 83.9, 87.2, and 86.7%. Mousavi et al. (2019) proposed a network
architecture including 9 convolutional layers and 2 fully connected
layers to extract features from raw EEG signals, this automatic
identification method used single-channel EEG signals to classify 2–
6 sleep-like stages. Khalili and Asl (2021) used a CNN to extract
features and then employed a temporal convolutional neural network
to extract temporal features from the feature vector extracted by
CNN, respectively, in Sleep-EDF-2013 and Sleep-EDF-2018 two
datasets got 85.39 and 82.46% classification accuracy.

Most of the existing feature extraction methods extract features
from a single channel (Terzano et al., 2001; Tagliazucchi et al.,
2013; Tagliazucchi and Laufs, 2014; Lv et al., 2015; Desjardins
et al., 2017; Stevner et al., 2019; Fu et al., 2021), the calculation
is also performed separately on a single channel. The amount
of information obtained through a single channel does not fully
characterize the changes in brain activities during sleep, making
it difficult to explore sleep stage information from a global level.
Current research mainly uses functional magnetic resonance imaging
(fMRI) to analyze brain function in different brain regions. The
fMRI has confirmed that each sleep stage is associated with specific
functional connectivity patterns (Goldberger et al., 2000; Berry et al.,
2012b; Brignol et al., 2012). Brain functional network is a relatively
new measure to characterize the exchange of information between
brain regions by calculating the temporal correlation or coherence
between them (Baptista et al., 2010; Siettos and Starke, 2016;
Rattenborg et al., 2020). EEG-based brain functional connectivity
is increasingly being used in sleep studies to differentiate sleep
disorders from healthy individuals (Liu et al., 2010; Gao et al., 2015;
Guo et al., 2019). Functional connectivity is employed to explore
synchronization mechanisms between different brain regions and
sleep stage classification accuracy. At present, the common methods
to analyze brain functional connections are phase-locked value (PLV)
(Diykh et al., 2018), directional transfer function (DTF) (Brázdil
et al., 2009), coherence (Bortel and Sovka, 2006), granger causality
analysis (GCA) (Chen et al., 2019), and mutual information (MI)
(Caballero-Gaudes et al., 2013). PLV is a classical method to construct
a functional network. PLV is only sensitive to phase but not amplitude
and is often used to measure the phase synchronization between
two signals. Compared with other synchronization measures, PLV
is easy to operate and can keep the same information level as more
complex indicators. In this manuscript, PLV is used to construct brain
networks in different sleep stages.

The functional network is used to analyze the brain interaction
and connection mechanism in different sleep stages. In this
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manuscript, the methods of multi-sub-periods and different
frequency bands are proposed to decode EEG signals in different
sleep stages. The main contributions are as follows,

(1) The PLV method is used to find the optimal frequency band
and sub-period numbers. The experimental results have shown that
when the number of sub-periods is 30, the α (8–13 Hz) frequency
band has the best classification performance.

(2) The multiple sub-periods are used for feature fusion. The
classification performance optimization strategy is used to obtain an
accuracy of 92.59%.

(3) In the optimal frequency band, a functional connection
network is constructed to explore the brain interaction and
connection mechanism in different sleep stages. The specific process
is shown in Figure 1.

The rest of this study is organized as follows. Sections “2.
Materials” and “3. Methods” describe the materials and methods.
Section “4. Experimental results and analysis” shows all results.
Sections “5. Discussion” and “6. Conclusion” provide a discussion
and a summary of future work, respectively.

2. Materials

This manuscript uses the Cyclic Alternating Pattern (CAP) sleep
database (Diykh et al., 2016; Yüce and Yaslan, 2016), available on
the PhysioNet website. There are 108 different subjects of sleep
diseases and health in CAP database, including 92 sleep disorders
subjects and 16 healthy subjects. The dataset includes at least 3
EEG channels, EOG, EMG, bilateral anterior tibial EMG, respiratory
signal, and ECG. The sampling frequency is 512 Hz To better analyze
the relationship between sleep state and brain regions, the calculation
of functional brain network connectivity requires as many channels
as possible. According to the international 10–20 system, FP2-F4, C4-
P4, P4-O2, FP1- F3, C3-P3, P3-O1, and other 6 channels are analyzed.
Because some subjects have no polysomnography data and reduce the
influence of age on brain connectivity. Four healthy subjects and six
nocturnal patients with frontal lobe epilepsy are used for analysis.
These subjects are No. 3, No. 5, No. 10, and No. 11 in the healthy
group and No. 3, No. 6, No. 11, No. 15, No. 16, and No. 21 in the
nfle group. According to the latest sleep rules, S3 and S4 sleep stages
are combined into the N3 sleep stage. The basic information on these
subjects and epochs will be shown in Table 1.

3. Methods

3.1. Data preprocessing and channel
selection

During human sleep, the stages of sleep change gradually, and
there are no clear boundaries between different stages of sleep. This
manuscript uses the data of the CAP database to segment the EEG
into 30-s segments. For sleep stages, the adopted 30-s period comes
from the R&K and AASM rules (Diykh et al., 2018), and related
work has also revealed that 30-s period lengths are feasible for
characterizing intrinsic brain activities (Phan et al., 2018; Zhou et al.,
2020). The 30-s data is divided into 5-Sub (6 s), 10-Sub (3 s), 15-Sub
(2 s), 20-Sub (1.5 s) and 30-Sub (1 s) methods. In addition, the data

are filtered in five frequency bands, namely δ (0.5–4 Hz), θ (4–8 Hz),
α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz).

In this manuscript, the adaptive channel selection algorithm
in gradient boosting (GB) classifier has been proposed to achieve
the optimal channel selection. The data of 12 channels in the
CAP database have been connected in a one-to-one way. Different
thresholds in the matrix have been set to find channels with good
connectivity. Five different numbers of EEG channels, which include
12 channels, 10 channels, 8 channels, 6 channels, and 4 channels, have
been selected for comparison. The 10-fold cross validation has been
employed to verify the validation of the proposed algorithm.

3.2. Multi-subsegment strategy

It can be seen from Figure 2 that the specific steps of the
multi-sub-segment strategy are divided the 30-s signal into multiple
consecutive signal sub-periods, the divided multi-sub-periods do not
overlap. In addition, the divided sub-periods are divided into sub-
periods of the same length according to the sample size of the 30-s
signal, as shown in Figure 2.

Let L be a 30-s sleep EEG data sample with a length of (30∗512).
When the number of sub-periods is set to be long Ls, the length of the
divided sub-periods satisfies the following constraints:

L = Ls ∗ Ns (1)

Ns is the number of sub-periods divided by the sleep period. L is the
sub-period length. The sampling frequency in the CAP sleep database
is 512 Hz, and the length of the data sample is 30 s, so the specific
calculation of the length of the sub-period can be as follows,

Ls = L/Ns = (30 ∗ 512)/Ns = 15360/Ns (2)

According to the above formula, the number of sub-periods
Ns plays an important role in the experiment. By setting an
appropriate number of sub-periods, effective classification features
can be obtained from the divided sub-periods, and at the same time,
redundancy can be properly handled. In addition, the division of
multiple sub-periods is also related to the computational complexity
of feature extraction, the features extracted from consecutive sub-
periods have time-series features for analyzing sleep signals. 30-s data
has been divided into sub-period data. In general, 30-s data can be
divided into 30 sub-periods. The sleep stages of sub-periods have been
recognized by the proposed algorithm. 30 classification results can
be obtained from the 30 sub-periods. The final classification result
of a 30-s data can be obtained from the highest result from the sub-
periods. The classification is at this stage, and different numbers of
sub-segments are used for comparative experiments to improve the
overall classification results.

3.3. Phase lock value

For network analysis of sleep signals, the construction of the
brain network is the basis of research and is crucial for network
analysis. In this manuscript, the processed data are used to construct
the brain network of sleep signals. The nodes involved in the
brain network refer to the electrodes used in the data acquisition
procedure, the connection between the networks refers to the
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FIGURE 1

The flow diagram of the proposed framework.

TABLE 1 Basic information about each subject and period numbers of each stage.

Condition Age N1 N2 N3 R W All stage All time

Sub1 Healthy 35 49 347 279 188 136 999 499.5 min

Sub2 Healthy 35 49 413 303 232 10 1,007 503.5 min

Sub3 Healthy 23 2 261 308 215 67 853 426.5 min

Sub4 Healthy 28 6 266 344 380 56 1,052 526 min

Sub5 Nfle 29 72 419 209 261 136 1,097 548.5 min

Sub6 Nfle 32 37 323 236 190 24 810 405 min

Sub7 Nfle 31 28 320 366 279 27 1,020 510 min

Sub8 Nfle 29 19 417 274 227 97 1,034 517 min

Sub9 Nfle 30 9 398 131 152 109 799 399.5 min

Sub10 Nfle 27 31 209 257 254 78 801 400.5 min

FIGURE 2

Sub-period division method direct PLV feature fusion decision choice.

functional connection between any two nodes (this study mainly
considers the functional connection network). According to whether
the flow of information between nodes is concerned, the constructed
brain network can be divided into a directed network and an
undirected network. There are many ways to build a network. For
the construction of directed networks, the commonly used methods
mainly include directional transfer function, granger causality, partial

directional coherence, and so on. There are also many methods for
constructing undirected networks, such as correlation, coherence,
phase locking, and phase lag.

This manuscript adopts PLV to assess brain functional
connectivity (Lachaux et al., 1999). PLV is widely used to measure
the phase synchronization between each pair of electrodes. The
reason is that PLV is only sensitive to the phase. Compared with
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FIGURE 3

Schematic diagram of the classification strategy. (A) The original signal is directly subjected to PLV for classification. (B) Feature-level fusion for
classification. (C) Multi-sub-segment classification for decision selection.

FIGURE 4

Communication strength of all channels.

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.1088116
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1088116 January 25, 2023 Time: 10:13 # 6

Xu et al. 10.3389/fnins.2022.1088116

TABLE 2 Selection of different channels and running time of
every 100 events.

Channel selection Acc (%) Time/100 events

C4-P4, P4-O2, C3-P3, P3-O1 79.8 1.62 s

Fp2-F4, C4-P4, P4-O2, Fp1-F3,
C3-P3, P3-O1

83.2 2.27 s

Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4,
Fp1-F3, C3-P3, P3-O1

81.7 3.11 s

Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4,
Fp1-F3, F3-C3, C3-P3, P3-O1, F7-T3

77.6 4.31 s

All channel 73.6 5.25 s

other methods, the PLV method is simple to operate. PLV is
the comparison between channel iand channel j. A high PLV
value indicates a strong coupling relationship between the pair of
electrodes (Quiroga et al., 2010). Therefore, PLV is used to construct
the corresponding brain network in this manuscript. The calculation
formula of PLV is defined as follows,

PLV =

∣∣∣∣∣∣ 1
N

N−1∑
j=0

ei18(t)

∣∣∣∣∣∣1φ(t) = φx(j1t)− φy(j1t) (3)

Among them, N represents the number of samples of the sleep
signal, and t represents the sampling period, the two-time series are
(x) t and

(
y
)
t, the two instantaneous phases are φx (t) and φy (t). Six

EEG channels are used in the experiment, and a 6∗6 PLV symmetric
matrix has been obtained from each period, and each value in the
matrix represented the coupling relationship of a pair of channels.
In addition, brain network analysis between sleep stages is compared
with the PLV matrix. The PLV matrices for each sleep stage are
averaged and brain networks are constructed based on thresholds.
The threshold is chosen from the maximum value that does not
appear outlier in the network.

3.4. Fusion strategy

For the assessment of brain functional connectivity in different
frequency bands and different numbers of sub-periods, three
strategies of feature processing are used to classify sleep stages.
The features mentioned here are the brain functional connectivity
features extracted from the processed data. The three methods are,
(1) Directly extract functional connectivity features from the 30-s
EEG data. (2) Stack the functional connectivity features extracted
from multiple sub-periods, and then input the features as a whole
into the classifier. (3) Directly analyze the functional connectivity
features of sub-periods Perform classification, and then take the mode
of the classification result as the result of the entire 30-s segment.
The specific description is shown in Figure 3. Divide the 30-s data
into 5, 10, 15, 20 and 30 segments according to Section “3.1. Data
preprocessing and channel selection.” The proposed three methods
are used to experiment with the segmented data.

Because method C may result in the same number of
classifications for certain two categories, a sub-classifier is designed
to re-extract the data with the same classification results, transfer it
to the sub-classifier, perform binary classification, and use the binary
classification result as the final classification result.

3.5. Classifier

This manuscript adopts a support vector machine (SVM)
with a Gaussian kernel function, which is implemented in
the LibSVM library (Cortes and Vapnik, 1995; Chang and
Lin, 2000). The way to achieve multi-class classification is
to use a one-to-one strategy. Classification performance is
evaluated from sleep stage accuracy for three strategies of
classification across frequency bands. 80% of the samples are
used for model training, the remaining 20% are used as test
data.

4. Experimental results and analysis

4.1. Channel selection and band
comparison

The channel selection proposed in Section “3.2. Multi-
subsegment strategy” has been tested. In Figure 4, the connectivity
coefficients of double channels and all combinations have been
separately calculated. In Table 2, the best performance has been
obtained when six channels are selected.

To reduce algorithm complexity, irrelevant channels or noisy
channels have been eliminated, the feature dimension has been
reduced. The calculation burden have been reduced. The algorithm
operation efficiency and algorithm performance have been improved.

To evaluate the effectiveness of the method proposed in this
manuscript, feature extraction is performed directly on the 30 s EEG
data using the feature extraction method described in Section “2.
Materials.” The results obtained by inputting the features into the
classifier can demonstrate the classification performance of the PLV
as a feature, and the classification results can be further compared
with the classification results of the proposed multi-sub feature
learning. In addition, the evaluation metrics used in this manuscript
include accuracy (Acc), sensitivity (Recall), positive predictive value
(Ppv), and F1 score (F1). Based on the experimental data in the
second part, the five frequency ranges of δ (0.5–4 Hz), θ (4–
8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz) are tested,
respectively. A 5-category sleep staging task is tested. The specific
classification results of these five frequency bands are shown in
Table 3.

According to the sleep staging results in Table 3, the overall
classification accuracy of the five frequency bands can be obtained
as 59.4, 72, 77.8, 70.3, and 69.4%, respectively. It can be seen that
the accuracy of the α (8–13 Hz) frequency band (Acc), sensitivity
(Recall), positive predictive value (Ppv), F1 score (F1), and other
evaluation indicators are better than other frequency bands. On
the test set, the α (8–13 Hz) frequency band has the highest
classification accuracy for EEG signals, which is 75%, and the δ

(0.5–4 Hz) frequency band has the lowest classification accuracy
for EEG signals, which is 59.4%. The specific situation is shown in
Figure 5.

The classification performance of these five frequency bands on
classification tasks is comprehensively analyzed. The classification
results of N1 in the θ (4–8 Hz) frequency bands are significantly
higher than other frequency bands. The classification accuracy is
better than other frequency bands.
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TABLE 3 The classification results of five types of sleep stages by directly
extracting features from 5-band EEG.

N1 N2 N3 W R

δ (0.5–4 Hz)

Recall 0.8 0.67 0.5 0.52 0.47

Ppv 0.72 0.56 0.51 0.66 0.5

F1 0.76 0.61 0.5 0.58 0.48

Acc (%) 59.4%

θ (4–8 Hz)

Recall 0.95 0.75 0.53 0.63 0.73

Ppv 0.9 0.66 0.73 0.76 0.59

F1 0.93 0.70 0.62 0.69 0.65

Acc (%) 72%

α (8–13 Hz)

Recall 0.71 0.82 0.78 0.75 0.83

Ppv 0.79 0.82 0.76 0.75 0.67

F1 0.66 0.82 0.77 0.75 0.74

Acc (%) 77.8%

β (13–30 Hz)

Recall 0.55 0.87 0.65 0.63 0.8

Ppv 0.61 0.70 0.78 0.79 0.65

F1 0.58 0.78 0.71 0.70 0.72

Acc (%) 70.3%

γ (30–40 Hz)

Recall 0.6 0.83 0.52 0.73 0.77

Ppv 0.9 0.71 0.61 0.76 0.57

F1 0.72 0.77 0.56 0.75 0.65

Acc (%) 69.4%

4.2. Sub-period feature fusion

Based on the abovefive classification tasks for PLV to realize
sleep signal, the features obtained by PLV in multiple sub-periods
are subjected to feature fusion and are compared with the features

TABLE 4 Accuracy of classification of sleep stages by five frequency bands
and five sub-periods under the sub-period feature fusion method.

δ (0.5–
4 Hz)

θ (4–
8 Hz)

α (8–
13 Hz)

β (13–
30 Hz)

γ (30–
40 Hz)

5-Sub 63.33% 69.04% 71.73% 70.59% 67.58%

10-Sub 71.67% 75.70% 78.77% 78.20% 72.97%

15-Sub 75.00% 80.59% 79.69% 76.89% 75.68%

20-Sub 78.33% 84.89% 87.00% 81.93% 83.10%

30-Sub 81.67% 86.81% 88.63% 83.82% 81.76%

extracted from the original signal. The raw EEG is divided into
multiple consecutive signal sub-periods that do not overlap, while
each piece of raw data uses a different wavelet number to obtain
different classification performances. The number of sub-periods is
5, 10, 15, 20, and 30 for five experiments, the number of segments is
not suitable for more than 30, because the duration of the K-complex
wave and spindle wave needs to be greater than 0.5 s.

The same classification model is used to divide the sleep stages
into five classifications, the optimal feature set can be selected for the
classification performance. According to the comparison results in
Section “3.1. Data preprocessing and channel selection,” the proposed
algorithm uses the sleep EEG signal in the α (8–13 Hz) frequency
band for experimental testing. The specific experimental results are
shown in Table 4.

As shown in Table 4, the accuracy of the multi-segment feature
fusion method is 10.83%. The multi-segment feature fusion method
can obtain higher classification performance than the method of
directly connecting the original signal through brain function. The
accuracy of the 30-segment method is the highest, and the accuracy
of sleep staging in the α-band reaches 88.63%.

FIGURE 5

The results of the 5-band EEG direct feature extraction for 5 types of sleep stages.
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TABLE 5 Accuracy of classification of sleep stages in five frequency bands
and five sub-periods under sub-period decision-making sleep stage
classification method.

δ (0.5–
4 Hz)

θ (4–
8 Hz)

α (8–
13 Hz)

β (13–
30 Hz)

γ (30–
40 Hz)

5-Sub 78.33% 84.59% 91.06% 92.02% 81.08%

10-Sub 83.33% 87.82% 91.42% 91.39% 89.19%

15-Sub 83.33% 92.00% 94.27% 92.65% 87.84%

20-Sub 85.00% 92.30% 94.84% 93.28% 90.54%

30-Sub 88.33% 93.04% 96.42% 94.12% 89.19%

4.3. Sub-period decision-making sleep
stage classification

The sub-period features are extracted according to the optimal
frequency band and the number of sub-periods is found in Section
“3.2. Multi-subsegment strategy,” the features extracted from sub-
periods are directly classified, because the result of the classification
is the result of the sub-period, and it cannot represent the category of
the original EEG. The divided data are recombined in chronological
order. In the combined classification results, the classification result
with the most categories is found. As shown in Table 5, it still shows
the best classification performance in the α band. The accuracy of 30
sub-period reaches 96.42%. During the experiment, there are cases
where the probability of belonging to two or more sleep stages is
the same. To solve this problem, the extracted features are input into
the binary classifier and the performance of the binary classification
is the best. Aiming at the problem of the same probability of sleep
stages, the extracted features are re-input to the proposed algorithm
to optimize the classification performance strategy and find the final
classification result. Figure 6 shows the combination of 5 types of
sleep stages, a total of 10 kinds of results, in which the abnormal

value appears in the case of N1 Vs W, the classification accuracy
is only 79.1%, the average classification accuracy of the remaining
9 combinations is 95.27%, multiple sub-classifiers has chosen to
handle this situation. Table 5 shows the classification results of the
functionally linked features for different sub-period numbers.

4.4. Contrast experiment

According to the optimal frequency band and the optimal
number of sub-periods found in Section “4.3. Sub-period decision-
making sleep stage classification,” a number of comparative tests
have been conducted. The comparison includes classification by
using various classifiers. The classifiers used in the classification are
LibSVM, GB, random forest, k-nearest neighbor (KNN), and CNN.
The specific classification results are shown in Figure 7. It can be seen
from Figure 7 that the classification effect of LibSVM is better than
the other three classifiers as a whole. The accuracy of the method
using CNN is low, probably because the extracted features are the
features between channels, and the convolution kernel destroys the
relative position relationship. Common brain network connection
methods include PLV, DTF, coherence, GCA, and MI. The optimal
frequency band and the optimal number of sub-periods are analyzed
under different connection modes. The concrete results are shown in
Figure 8, PLV connection method is better than other methods.

4.5. Cross-validation

According to the above experiments, direct PLV feature
extraction, multi-sub-period feature fusion, and multi-sub-period
decision-making methods are carried out, respectively, and finally,
30 sub-period features are found to have the best classification effect
for decision-making. The EEG signals of different subjects have

FIGURE 6

Pairwise classification results for sub-period data.
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FIGURE 7

Compare different classifiers.

FIGURE 8

Compare different connection methods.

TABLE 6 Sleep classification results after cross-validation.

N1 N2 N3 W R

Recall 0.96 0.85 0.89 0.96 0.96

Ppv 0.96 0.92 0.86 0.93 0.96

F1 0.96 0.88 0.87 0.95 0.96

Acc (%) 92.59%

individual differences, the generalization of the proposed algorithm
cannot be guaranteed. Therefore, the method needs to be further
evaluated for different subjects to test the performance of the method.
To demonstrate the effectiveness of the proposed method, the 10-
fold cross-validation experiments are conducted between subjects,
selecting one subject as the test data and the other subjects as
the training set. Since the training dataset and test dataset do not
contain EEG samples of the same subjects, cross-validation between
subjects can well reflect the generalization of the proposed in practical
applications. The α (8–13 Hz) frequency band is used for testing with
30 sub-periods, the final cross-validation results are shown in Table 6.
For the experimental results in Table 6, it is found that the final result
for the 5-class sleep stage classification is 92.59%, although this result
is lower than the result of the random division, the cross-validated
method can overcome the randomness of the data.

4.6. Brain network analysis of PLV

The PLV values in different stages of the α frequency band of
healthy people are combined in pairs. Figure 9 shows the comparison

FIGURE 9

Comparison of brain network connectivity in different sleep stages in
theα frequency band.

of connectivity in different sleep stages, where the red line represents
the former with high connectivity, the blue line is the opposite.

In Figure 9, each line represents the connectivity coefficient
between each pair of channels. It can be observed that the overall
connectivity of the N1 stage is greater than that of the REM stage, that
of the N2 stage is greater than that of the N3 stage, the connectivity of
the N3 and W stages is generally smaller than that of the REM stage.
The connectivity between the left and right brains in the N1 stage
is stronger than that in the N2 stage, but the connectivity between
the occipital, parietal, and frontal lobes is weaker than that in the
N2 stage. Compared with the N3 stage, the left and right brains of
the N1 stage are weaker The connectivity between them is stronger
than that in the N3 stage, but the direct connectivity between the
frontal and parietal lobes in different brain regions is also greater
than that in the N3 stage. For the comparison of N2, W, and REM
stages, the connectivity between the left and right brains in the N2
stage is smaller than that in the REM stage, and in the W stage, the
connectivity between different brain regions is stronger.

5. Discussion

The main purpose of this study is to study the performance
of multi-channel EEG signals on sleep staging, obtain effective
fusion features using multiple sub-periods, propose a classification
optimization strategy, and use the brain function network to analyze
the physiological phenomenon of sleep staging. Therefore, a feature
learning method of multi-sub-period brain functional network is
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TABLE 7 Comparison of automatic sleep stage classification algorithms.

References Description Performance (%)

Database: CAP

Signals: EEG

Sharma et al., 2021 Channel: F4-C4, C4-A1 Accuracy:

Classification: 6-class A: Balance data
B: Imbalance data

(A):92.8
(B):85.3

Features: wavelet decomposition

Classifier: EBT

Database: CAP

Signals: EEG

Tripathy et al., 2020 Channel: F4-C4, C4-P4, P4-O2, C4-A1

Classification: 6-class Accuracy: 71.68

Features: Dispersion entropy and Bubble entropy

Classifier: Hybrid classifier

Database: CAP

Zhao et al., 2022 Signals: EEG
Channel: C3-A2, C4-A1

Classification: 5-class [W vs. S1 vs. S2 vs. (S3 + S4) vs. REM] Accuracy: 78.8

Features: Convolution feature

Classifier: RNN

Database: CAP

Signals: EEG

Channel: FP2-F4,C4-P4,P4-O2,FP1-F3,C3-P3,P3-O1

Our method Classification: 5-class [W vs. S1 vs. S2 vs. (S3 + S4) vs. REM] Accuracy: 92.59

Features: Interval connectivity coefficient

Classifier: LibSVM

proposed, which can analyze the features of functional brain network
in time series. Comparing the multi-sub-segment and non-multi-
sub-segment classification results, the classification accuracy of 30-
Sub of 98.63% is significantly better than the original data, and at
the same time, it is higher than other classification performances
with different numbers of sub-segments. Setting a different number
of sub-segments will have different classification effects. For example,
in the case of 20-Sub, the classification of the REM stage is better
than the division of other sub-segments, which shows that the
features extracted in 20-Sub are more suitable for the classification
of the REM stage. Different sub-divisions have different classification
effects on feature learning, so the relationship between the optimal
number of sub-segments and features will be studied in future work.
This manuscript explores multi-Sub EEG feature learning for multi-
channel EEG sleep staging, which has important potential to improve
the application of sleep staging.

Through the analysis of different frequency bands, it is found that
the α frequency band has a good performance in classifying sleep
stages. For example, in the AASM standard for the classification of
sleep stages, the interpretation of the W stage is to record a series of
sinusoidal brain waves of 8–13 Hz in the occipital area. The amplitude
can be decreased when eyes are open. In addition, α activity may be
more pronounced in REM than in N1, the α frequency in REM is
usually 1–2 Hz slower than in W. At the same time, the related work
of others also have revealed the important role of the α frequency
band in sleep staging. Dkhil et al. (2017) proposed the importance of
the α band in the assessment of drowsiness. Knaut et al. (2019) found
that changes in α oscillations reflect different brain states associated

with different levels of wakefulness and thalamic activity. Figure 9
shows the differences in the brain connectivity of different sleep stages

in the α frequency band. For example, in stages N2 and N3, the overall

connectivity of N2 is greater than that of stage N3. This phenomenon

indicates that the connections between brain regions are relatively

close. The overall connectivity difference between the N1 and N2

stages is not very obvious, but there is a clear gap in the connectivity

between the left and right brain regions.

The proposed framework is compared with the state-of-the-art

in sleep stage classification studies, as shown in Table 7. Sharma

et al. (2021) recently used the CAP database to decompose EEG

epochs into sub-bands using a new class of optimized wavelet

filters, the norm features were computed from the six sub-bands

coefficients of the optimal wavelet filter bank, which were processed

by ensemble of bagged tree (EBT). The ensemble of classifiers

obtained 85.3% of unbalanced classification results and 92.8% of

balanced data. Tripathy et al. (2020) used 25 subjects for 6 sleep-like

stage classification. The CAP database was employed for processing

and obtained the classification of 71.68%. This database includes 6

healthy, 7 insomniacs, 1 brux, 1 breathing disorder, and 10 REM

behavior disorder patients. Zhao et al. (2022) used CNN to learn the

representative features of each sleep stage, feedback on these feature

sequences to recurrent neural network (RNN), and learn the context

information of sleep stages in chronological order.
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6. Conclusion

The framework of dividing sleep stages by multi-sub-segment
brain functional connectivity has been proposed. The original EEG
signal is filtered into different frequency bands, and the PLV is
calculated for the processed data, respectively. The PLV value
represents the connectivity coefficient between different channels,
the PLV matrix calculated in different sub-periods is used as
a feature to find the optimal frequency band according to the
performance of sleep stage classification. Then, the filtered data is
divided into different numbers of sub-periods, the PLV matrices
of the sub-periods are calculated, the features of different numbers
of sub-periods are feature-fused, the optimal number of sub-period
classifications is found by the classification performance after feature
fusion. Finally, the classification performance optimization strategy
is used for classification, the brain network is constructed by
PLV to explore the mechanism of brain functional connectivity.
Firstly, to test the proposed method, extensive experiments have
been performed on the sleep dataset CAP. The classification results
are tested and analyzed using two test methods, random data
partitioning and inter-subject cross-validation. The final results are
96.42 and 92.59%. These results have demonstrated the effectiveness
and robustness of the proposed multi-channel EEG sleep staging
algorithm. Secondly, the connectivity of N1 stage is larger than
that of REM stage, the N2 stage is larger than that of N3 stage,
the connectivity of N3 stage and W stage is smaller than that
of REM stage. For the comparison of N2, W, and REM stages,
the connectivity between the left and right brains in the N2
stage is smaller than that in the REM stage, and in the W
stage, the connectivity between different brain regions is stronger.
Finally, different numbers of sub-periods have different performances
for distinguishing sleep stages. The case of 30-Sub shows good
performance, but using 30-Sub in the α band has a higher error
rate between N1 and W stages. In the future, multi-channel
EEG signals in the CAP database will be planned to classify
different sleep disorders, such as insomnia and REM dyskinesia.
Furthermore, graph convolutional networks will be employed for
automatic sleep stage monitoring to develop an online brain-
computer interface system.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.physionet.org/static/published-
projects/capslpdb/cap-sleep-database-1.0.0.zip.

Author contributions

FX, JT, SL, and JL had contributed to the conception and design
of the study. JZ, ML, and XY had conducted the experiments. CW
and YTL had collected the data. WS and YBL have processed the

data. LG and BZ had drafted the manuscript. JL had reviewed the
manuscript. All authors contributed to the article and approved the
submitted version.

Funding

This work was funded by Natural Science Foundation of
Shandong Province of China under (Grant Nos. ZR2022MF289,
ZR2020MH160, and ZR2019MA037), Natural Science Foundation of
China under (Grant Nos. 62271293 and 81471345), Introduce
Innovative Teams of 2021 "New High School 20 Items"
Project under (Grant No. 2021GXRC071), Program for Youth
Innovative Research Team in the University of Shandong
Province in China under (Grant No. 2019KJN010), Research
Leader Program of Jinan Science and Technology Bureau under
(Grant No. 2019GXRC061), Graduate Education and Degree Site
Construction and Development Projects of Qilu University of
Technology in 2022, School-level Teaching and Research Projects
of Qilu University of Technology in 2021 under (Grant No.
2021yb08), and Talent Training and Teaching Reform Project
of Qilu University of Technology in 2022 under (Grant No.
P202204).

Acknowledgments

The authors thank Qianfoshan Hospital for his helpful comments
on the early version of the manuscript.

Conflict of interest

The authors declare that the research is conducted in the absence
of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2022.1088116/
full#supplementary-material

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.1088116
https://www.physionet.org/static/published-projects/capslpdb/cap-sleep-database-1.0.0.zip
https://www.physionet.org/static/published-projects/capslpdb/cap-sleep-database-1.0.0.zip
https://www.frontiersin.org/articles/10.3389/fnins.2022.1088116/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.1088116/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1088116 January 25, 2023 Time: 10:13 # 12

Xu et al. 10.3389/fnins.2022.1088116

References

Miyata, S., Noda, A., Nakata, S., Yagi, H., Yanagi, E., Honda, K., et al. (2007).
Daytime polysomnography for early diagnosis and treatment of patients with suspected
sleep-disordered breathing. Sleep Breath 2, 109–115. doi: 10.1007/s11325-006-0
091-9

Younes, M. (2017). The case for using digital eeg analysis in clinical sleep medicine.
Sleep Sci. 1, 1–15. doi: 10.1186/s41606-016-0005-0

Yan, R., Zhang, C., Spruyt, K., Wei, L., Wang, Z., Tian, L., et al. (2019). Multi-modality
of polysomnography signals’ fusion for automatic sleep scoring. Biomed. Signal Process
11, 13–23. doi: 10.1016/j.bspc.2018.10.001

Ronzhina, M., Janoušek, O., Koláøová, J., Nováková, M., Honzík, P., and Provazník,
I. (2012). Sleep scoring using artificial neural networks. Sleep Med. Rev. 16, 251–263.
doi: 10.1016/j.smrv.2011.06.003

Chapotot, F., and Becq, G. (2010). Automated sleep-wake staging combining robust
feature extraction. Artificial neural network classification, and flexible decision rules. Int.
J. Adapt. Control Signal Process 24, 409–423. doi: 10.1002/acs.1147

Wolpert, E. A. (1969). A manual of standardized terminology. techniques and scoring
system for sleep stages of human subjects. Arch. Gen. Psychiatry 20, 246–247. doi: 10.
1001/archpsyc.1969.01740140118016

Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S., Marcus, M. C., Vaughn, B. V.,
et al. (2012a). The AASM manual for the scoring of sleep and associated events. Rules,
terminology and technical specifications.Am. Acad. SleepMed. (Darien). Available online
at: http://www.aasmnet.org/scoringmanual/

Diykh, M., and Li, Y. (2016). Complex networks approach for EEG signal sleep stages
classification. Expert. Syst. Appl. 63, 241–248. doi: 10.1016/j.eswa.2016.07.004

Seo, H., Back, S., Lee, S., Park, D., Kim, T., and Lee, K. (2020). Intra-and inter-epoch
temporal context network (IITNet) using sub-epoch features for automatic sleep scoring
on raw single-channel EEG. Biomed. Signal Process 61:102037. doi: 10.1016/j.bspc.2020.
102037

Weber, F. D., Supp, G. G., Klinzing, J. G., Mölle, M., Engel, A. K., and Born, J. (2021).
Coupling of gamma band activity to sleep spindle oscillations–a combined EEG/MEG
study. NeuroImage 224:117452. doi: 10.1016/j.neuroimage.2020.117452

An, P., Yuan, Z., and Zhao, J. (2021). Unsupervised multi-subepoch feature learning
and hierarchical classification for EEG-based sleep staging. Expert Syst. Appl. 186:115759.
doi: 10.1016/j.eswa.2021.115759

Gunnarsdottir, K. M., Gamaldo, C. E., Salas, R. M., Ewen, J. B., Allen, R. P., and Sarma,
S. V. (2018). “A novel sleep stage scoring system: combining expert-based rules with
a decision tree classifier,” in Proceedings of the 40th annual international conference of
the IEEE engineering in medicine and biology society (EMBC). Honolulu: 3240–3243.
doi: 10.1109/EMBC.2018.8513039

da Silveira, T. L., Kozakevicius, A. J., and Rodrigues, C. R. (2016). Single-channel
EEG sleep stage classification based on a streamlined set of statistical features in wavelet
domain. Med. Biol. Eng. Comput. 55, 343–352. doi: 10.1007/s11517-016-1519-4

Zhu, G., Li, Y., and Wen, P. (2014). Analysis and classification of sleep stages based
on difference visibility graphs from a single-channel EEG signal. IEEE J. Biomed. Health
Inform. 18, 1813–1821. doi: 10.1109/JBHI.2014.2303991

Tabar, Y. R., Mikkelsen, K. B., Rank, M. L., Hemmsen, M. C., and Kidmose, P. (2021).
Investigation of low dimensional feature spaces for automatic sleep staging. Comput.
Meth. Programs Biomed. 205:106091. doi: 10.1016/j.cmpb.2021.106091

Mousavi, Z., Rezaii, T. Y., Sheykhivand, S., Farzamnia, A., and Razavi, S. (2019).
Deep convolutional neural network for classification of sleep stages from single-
channel EEG signals. J. Neurosci. Methods. 324:108312. doi: 10.1016/j.jneumeth.2019.10
8312

Khalili, E., and Asl, B. M. (2021). Automatic sleep stage classification using temporal
convolutional neural network and new data augmentation technique from raw single-
channel EEG. Comput. Meth. Programs Biomed. 204:106063. doi: 10.1016/j.cmpb.2021.
106063

Stevner, A. B. A., Vidaurre, D., Cabral, J., Rapuano, K., Nielsen, S. F. V., Tagliazucchi,
E., et al. (2019). Discovery of key whole-brain transitions and dynamics during human
wakefulness and non-REM sleep. Nat. Commun. 10, 1–14. doi: 10.1038/s41467-019-
08934-3

Tagliazucchi, E., Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke, K., and Laufs, H.
(2013). Breakdown of long-range temporal dependence in default mode and attention
networks during deep sleep. Proc. Natl. Acad. Sci. U.S.A. 110, 15419–15424. doi: 10.1073/
pnas.1312848110

Tagliazucchi, E., and Laufs, H. (2014). Decoding wakefulness levels from typical fMRI
resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82,
695–708. doi: 10.1016/j.neuron.2014.03.020

Fu, M., Wang, Y., Chen, Z., Li, J., Xu, F., and Liu, X. (2021). Deep learning in automatic
sleep staging with a single channel electroencephalography. Front. Physiol. 12:628502.
doi: 10.3389/fphys.2021.628502

Lv, J., Liu, D., Ma, J., Wang, X., and Zhang, J. (2015). Graph theoretical analysis of
BOLD functional connectivity during human sleep without EEG monitoring. PLoS One
10:106063. doi: 10.1371/journal.pone.0137297

Desjardins, M. È, Carrier, J., Lina, J. M., Fortin, M., Gosselin, N., Montplaisir, J., et al.
(2017). EEG functional connectivity prior to sleepwalking: evidence of interplay between
sleep and wakefulness. Sleep 40, 4. doi: 10.1093/sleep/zsx024

Terzano, M. G., Parrino, L., Smerieri, A., Chervin, R., Chokroverty, S., Guilleminault,
C., et al. (2001). Atlas, rules, and recording techniques for the scoring of cyclic alternating
pattern (CAP) in human sleep. Sleep Med. 3, 187–199. doi: 10.1016/S1389-9457(02)
00003-5

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,
et al. (2000). PhysioBank. Physiotoolkit, and physionet: components of a new research
resource for complex physiologic signals. Circulation 101, e215–e220. doi: 10.1161/01.
CIR.101.23.e215

Berry, R. B., Budhiraja, R., Gottlieb, D. J., Gozal, D., Iber, C., Kapur, V. K., et al.
(2012b). Rules for scoring respiratory events in sleep: update of the 2007 AASM manual
for the scoring of sleep and associated events. Sleep Med. J. Clin. Sleep Med. 8, 597–619.
doi: 10.5664/jcsm.2172

Brignol, A., Al-Ani, T., and Drouot, X. (2012). “EEG-based automatic sleep-wake
classification in humans using short and standard epoch lengths,” in Proceedings of the
IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE). Larnaca:
276–281. doi: 10.1016/j.cmpb.2012.10.002

Siettos, C., and Starke, J. (2016). Multiscale modeling of brain dynamics: From single
neurons and networks to mathematical tools. Wiley Interdiscip. Rev. Syst. 8, 438–458.
doi: 10.1002/wsbm.1348

Rattenborg, N. C., Amlaner, C. J., and Lima, S. L. (2020). Behavioral,
neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci.
Biobehav. Rev. 24, 817–842. doi: 10.1016/S0149-7634(00)00039-7

Baptista, M. S., Kakmeni, F. M., and Grebogi, C. (2010). Combined effect of chemical
and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the
rate of information. Phys. Rev. E. 82:036203. doi: 10.1103/PhysRevE.82.036203

Guo, X., Simas, T., Lai, M. C., Lombardo, M. V., Chakrabarti, B., Ruigrok, A. N., et al.
(2019). Enhancement of indirect functional connections with shortest path length in the
adult autistic brain. Hum. Brain Mapp. 40, 5354–5369. doi: 10.1002/hbm.24777

Liu, Y., Yan, L., Zeng, B., and Wang, W. (2010). “Automatic sleep stage scoring using
Hilbert-Huang transform with BP neural network,” in Proceedings of the 4th International
Conference on Bioinformatics and Biomedical Engineering. Chengdu: 1–4.

Gao, Q., Zhou, J., Ye, B., and Wu, X. (2015). Automatic sleep staging method based on
energy features and least squares support vector machine classifier. Int. J. Biomed. Eng.
Technol. 32, 531–536.

Diykh, M., Li, Y., Wen, P., and Li, T. (2018). Complex networks approach for depth of
anesthesia assessment. Measurement 119, 178–189. doi: 10.1016/j.measurement.2018.0
1.024

Brázdil, M., Babiloni, C., Roman, R., Daniel, P., Bares, M., Rektor, I., et al. (2009).
Directional functional coupling of cerebral rhythms between anterior cingulate and
dorsolateral prefrontal areas during rare stimuli: A directed transfer function analysis
of human depth EEG signal. Hum. Brain Mapp. 30, 138–146. doi: 10.1002/hbm.20491

Bortel, R., and Sovka, P. (2006). EEG–EMG coherence enhancement. Signal Process.
86, 1737–1751. doi: 10.1016/j.sigpro.2005.09.011

Chen, B., Ma, R., Yu, S., Du, S., and Qin, J. (2019). Granger causality analysis based
on quantized minimum error entropy criterion. IEEE Signal Process. Lett. 26, 347–351.
doi: 10.1109/LSP.2019.2890973

Caballero-Gaudes, C., Ville, D. V., Grouiller, F., Thornton, R., Lemieux, L., Seeck, M.,
et al. (2013). Mapping interictal epileptic discharges using mutual information between
concurrent EEG and fMRI. Neuroimage 68, 248–262. doi: 10.1016/j.neuroimage.2012.1
2.011

Yüce, A. B., and Yaslan, Y. (2016). “A disagreement based co-active learning method for
sleep stage classification,” in Proceedings of the 2016 international conference on systems,
signals and image processing (IWSSIP). Bratislava, ACT: IEEE, 1–4.

Diykh, M., Li, Y., and Wen, P. (2016). EEG sleep stages classification based on time
domain features and structural graph similarity. IEEE Trans. Neural Syst. Rehabil. Eng
24, 1159–1168. doi: 10.1109/TNSRE.2016.2552539

Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., and De Vos, M. (2018). “DNN
filter bank improves 1-max pooling CNN for single-channel EEG automatic sleep stage
classification,” in Proceedings of the 40th annual international conference of the IEEE
engineering in medicine and biology society (EMBC). Honolulu, ACT: IEEE, 453–456.
doi: 10.1109/EMBC.2018.8512286

Zhou, J., Wang, G., Liu, J., Wu, D., Xu, W., Wang, Z., et al. (2020). Automatic sleep
stage classification with single channel EEG signal based on two-layer stacked ensemble
model. IEEE Access 8, 57283–57297. doi: 10.1109/ACCESS.2020.2982434

Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring phase
synchrony in brain signals. Hum. Brain Mapp. 8, 194–208. doi: 10.1002/(SICI)1097-
019319998:4

Quiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P. (2010). Performance of
different synchronization measures in real data: a case study on electroencephalographic
signals. Phys. Rev. E 82:036203. doi: 10.1103/PhysRevE.65.041903

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.1088116
https://doi.org/10.1007/s11325-006-0091-9
https://doi.org/10.1007/s11325-006-0091-9
https://doi.org/10.1186/s41606-016-0005-0
https://doi.org/10.1016/j.bspc.2018.10.001
https://doi.org/10.1016/j.smrv.2011.06.003
https://doi.org/10.1002/acs.1147
https://doi.org/10.1001/archpsyc.1969.01740140118016
https://doi.org/10.1001/archpsyc.1969.01740140118016
http://www.aasmnet.org/scoringmanual/
https://doi.org/10.1016/j.eswa.2016.07.004
https://doi.org/10.1016/j.bspc.2020.102037
https://doi.org/10.1016/j.bspc.2020.102037
https://doi.org/10.1016/j.neuroimage.2020.117452
https://doi.org/10.1016/j.eswa.2021.115759
https://doi.org/10.1109/EMBC.2018.8513039
https://doi.org/10.1007/s11517-016-1519-4
https://doi.org/10.1109/JBHI.2014.2303991
https://doi.org/10.1016/j.cmpb.2021.106091
https://doi.org/10.1016/j.jneumeth.2019.108312
https://doi.org/10.1016/j.jneumeth.2019.108312
https://doi.org/10.1016/j.cmpb.2021.106063
https://doi.org/10.1016/j.cmpb.2021.106063
https://doi.org/10.1038/s41467-019-08934-3
https://doi.org/10.1038/s41467-019-08934-3
https://doi.org/10.1073/pnas.1312848110
https://doi.org/10.1073/pnas.1312848110
https://doi.org/10.1016/j.neuron.2014.03.020
https://doi.org/10.3389/fphys.2021.628502
https://doi.org/10.1371/journal.pone.0137297
https://doi.org/10.1093/sleep/zsx024
https://doi.org/10.1016/S1389-9457(02)00003-5
https://doi.org/10.1016/S1389-9457(02)00003-5
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1016/j.cmpb.2012.10.002
https://doi.org/10.1002/wsbm.1348
https://doi.org/10.1016/S0149-7634(00)00039-7
https://doi.org/10.1103/PhysRevE.82.036203
https://doi.org/10.1002/hbm.24777
https://doi.org/10.1016/j.measurement.2018.01.024
https://doi.org/10.1016/j.measurement.2018.01.024
https://doi.org/10.1002/hbm.20491
https://doi.org/10.1016/j.sigpro.2005.09.011
https://doi.org/10.1109/LSP.2019.2890973
https://doi.org/10.1016/j.neuroimage.2012.12.011
https://doi.org/10.1016/j.neuroimage.2012.12.011
https://doi.org/10.1109/TNSRE.2016.2552539
https://doi.org/10.1109/EMBC.2018.8512286
https://doi.org/10.1109/ACCESS.2020.2982434
https://doi.org/10.1002/(SICI)1097-019319998:4
https://doi.org/10.1002/(SICI)1097-019319998:4
https://doi.org/10.1103/PhysRevE.65.041903
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1088116 January 25, 2023 Time: 10:13 # 13

Xu et al. 10.3389/fnins.2022.1088116

Chang, C. C., and Lin, C. J. (2000). LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 1–27. doi: 10.1145/1961189.1961199

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297.
Dkhil, M. B., Chawech, N., Wali, A., and Alimi, A. M. (2017). “Towards an automatic

drowsiness detection system by evaluating the α band of EEG signals,” in Proceedings of
the IEEE 15th international symposium on applied machine intelligence and informatics
(SAMI). Herl’any, ACT: IEEE, 000371–000376.

Knaut, P., von Wegner, F., Morzelewski, A., and Laufs, H. (2019). EEG-correlated fMRI
of human α (de-) synchronization. Clin. Neurophysiol. 130, 1375–1386. doi: 10.1016/j.
clinph.2019.04.715

Sharma, M., Tiwari, J., and Acharya, U. R. (2021). Automatic sleep-stage scoring in
healthy and sleep disorder patients using optimal wavelet filter bank technique with EEG
signals. Int. J. Environ. Res. Public Health 18:3087. doi: 10.3390/ijerph18063087

Tripathy, R. K., Ghosh, S. K., Gajbhiye, P., and Acharya, U. R. (2020). Development
of automated sleep stage classification system using multivariate projection-based fixed
boundary empirical wavelet transform and entropy features extracted from multichannel
EEG signals. Entropy 22:1141. doi: 10.3390/e22101141

Zhao, C., Li, J., and Guo, Y. (2022). SleepContextNet: A temporal context network
for automatic sleep staging based single-channel EEG. Comput. Meth. Prog. Biomed.
220:106806. doi: 10.1016/j.cmpb.2022.106806

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.1088116
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.clinph.2019.04.715
https://doi.org/10.1016/j.clinph.2019.04.715
https://doi.org/10.3390/ijerph18063087
https://doi.org/10.3390/e22101141
https://doi.org/10.1016/j.cmpb.2022.106806
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Exploration of sleep function connection and classification strategies based on sub-period sleep stages
	1. Introduction
	2. Materials
	3. Methods
	3.1. Data preprocessing and channel selection
	3.2. Multi-subsegment strategy
	3.3. Phase lock value
	3.4. Fusion strategy
	3.5. Classifier

	4. Experimental results and analysis
	4.1. Channel selection and band comparison
	4.2. Sub-period feature fusion
	4.3. Sub-period decision-making sleep stage classification
	4.4. Contrast experiment
	4.5. Cross-validation
	4.6. Brain network analysis of PLV

	5. Discussion
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


