1,036 research outputs found

    Equations for solar tracking

    Get PDF
    Direct Sun light absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is also needed to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor closed to the spectrometer is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45{\deg} mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed for atmospheric research by our group.Comment: 14 pages, 7 figures. Second version of the paper as published in Sensors. Main correction: a rotation matrix converted to a reflection matrix. Main addition: a discussion on how the control theory applies to this kind of tracking syte

    Electrophysiological Correlates of Reading the Single- and Interactive-Mind

    Get PDF
    Understanding minds is the cognitive basis of successful social interaction. In everyday life, human mental activity often happens at the moment of social interaction among two or multiple persons instead of only one-person. Understanding the interactive mind of two- or multi-person is more complex and higher than understanding the single-person mind in the hierarchical structure of theory of mind. Understanding the interactive mind maybe differentiate from understanding the single mind. In order to examine the dissociative electrophysiological correlates of reading the single mind and reading the interactive mind, the 64 channels event-related potentials were recorded while 16 normal adults were observing three kinds of Chinese idioms depicted physical scenes, one-person with mental activity, and two- or multi-person with mental interaction. After the equivalent N400, in the 500- to 700-ms epoch, the mean amplitudes of late positive component (LPC) over frontal for reading the single mind and reading the interactive mind were significantly more positive than for physical representation, while there was no difference between the former two. In the 700- to 800-ms epoch, the mean amplitudes of LPC over frontal–central for reading the interactive mind were more positive than for reading the single mind and physical representation, while there was no difference between the latter two. The present study provides electrophysiological signature of the dissociations between reading the single mind and reading the interactive mind

    Phenomenological study on the significance of the scalar potential and Lamb shift

    Full text link
    We indicated in our previous work that for QED the contributions of the scalar potential which appears at the loop level is much smaller than that of the vector potential and in fact negligible. But the situation may be different for QCD, one reason is that the loop effects are more significant because αs\alpha_s is much larger than α\alpha, and secondly the non-perturbative QCD effects may induce the scalar potential. In this work, we phenomenologically study the contribution of the scalar potential to the spectra of charmonia. Taking into account both vector and scalar potentials, by fitting the well measured charmonia spectra, we re-fix the relevant parameters and test them by calculating other states of the charmonia family. We also consider the role of the Lamb shift and present the numerical results with and without involving the Lamb shift

    Production of the neutral top-pion πt0\pi_{t}^{0} in association with a high-pTp_{T} jet at the LHCLHC

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2)(TC2) model, we study production of the neutral top-pion πt0\pi_{t}^{0} in association with a high-pTp_{T} jet at the LHCLHC, which proceeds via the partonic processes gg⟶πt0ggg\longrightarrow \pi_{t}^{0}g, gq⟶πt0qgq\longrightarrow \pi_{t}^{0}q, qqˉ⟶πt0gq\bar{q}\longrightarrow \pi_{t}^{0}g, gb(bˉ)⟶πt0b(bˉ)gb(\bar{b})\longrightarrow \pi_{t}^{0}b(\bar{b}), and bbˉ⟶πt0gb\bar{b}\longrightarrow \pi_{t}^{0}g. We find that it is very challenging to detect the neutral top-pion πt0\pi_{t}^{0} via the process pp⟶πt0+jet+X→ttˉ+jet+Xpp\longrightarrow \pi_{t}^{0}+jet+X\to t\bar{t}+jet+X, while the possible signatures of πt0\pi_{t}^{0} might be detected via the process pp⟶πt0+jet+X→(tˉc+tcˉ)+jet+Xpp\longrightarrow \pi_{t}^{0}+jet+X\to(\bar{t}c+t\bar{c})+jet+X at the LHCLHC.Comment: 13 pages, 4 figures; typos correcte

    Hydroelastic investigation on a pile breakwater integrated with a flexible tail for long-wave attenuation

    Get PDF
    A novel concept of wave attenuator is proposed for the defense of long waves, through integrating a flexible tail to the lee-side surface of a pile breakwater. The flexible tail works as a floating blanket made up of hinged blocks, whose scale and stiffness can be easily adjusted. A two-phase-flow numerical model is established based on the open-source computational fluid dynamics (CFD) code OpenFOAM to investigate its wave attenuation performance. Incompressible Navier—Stokes equations are solved in the fluid domain, where an additional computational solid mechanics (CSM) solver is embedded to describe the elastic deformation of the floating tail. The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body. The accuracy of the numerical model is validated through comparison with experimental data. Effects of the flexible tail on performance of the pile breakwater are investigated systematically. Dynamic behaviours of the tail are examined, and characteristics of its natural frequency are identified. For safety reasons, the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined. It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater. A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater. The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure
    • …
    corecore