6,029 research outputs found

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid

    Full text link
    Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule's arrested position in the glass state and the reorientational correlators for angular-momentum index =1\ell = 1 and =2\ell = 2 near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the α\alpha-process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule's inertia parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin

    ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

    Get PDF
    ROSAT HRI observations have been used to determine an upper limit of the Crab pulsar surface temperature from the off-pulse count rate. For a neutron star mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and interstellar column density, the redshifted temperature upper limit is\/ Ts1.55×106T_s^\infty \le 1.55\times 10^6 K (3σ)(3\sigma). This is the lowest temperature upper limit obtained for the Crab pulsar so far. Slightly different values for TsT_s^\infty are computed for the various neutron star models available in the literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A. Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Photon-induced production of the mirror quarks from the LHTLHT model at the LHCLHC

    Full text link
    The photon-induced processes at the LHCLHC provide clean experimental conditions due to absence of the proton remnants, which might produce complementary and interesting results for tests of the standard model and for searching of new physics. In the context of the littlest HiggsHiggs model with T-parity, we consider the photon-induced production of the mirror quarks at the LHCLHC. The cross sections for various production channels are calculated and a simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure

    Gaussian density fluctuations and Mode Coupling Theory for supercooled liquids

    Full text link
    The equations of motion for the density modes of a fluid, derived from Newton's equations, are written as a linear generalized Langevin equation. The constraint imposed by the fluctuation-dissipation theorem is used to derive an exact form for the memory function. The resulting equations, solved under the assumption that the noise, and consequently density fluctuations, of the liquid are gaussian distributed, are equivalent to the random-phase-approximation for the static structure factor and to the well known ideal mode coupling theory (MCT) equations for the dynamics. This finding suggests that MCT is the canonical mean-field theory of the fluid dynamics.Comment: 4 pages, REVTE

    E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton's Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants

    Get PDF
    10.1371/journal.pone.0163035PloS one119e0163035GUSTO (Growing up towards Healthy Outcomes

    Time series aggregation, disaggregation and long memory

    Get PDF
    We study the aggregation/disaggregation problem of random parameter AR(1) processes and its relation to the long memory phenomenon. We give a characterization of a subclass of aggregated processes which can be obtained from simpler, "elementary", cases. In particular cases of the mixture densities, the structure (moving average representation) of the aggregated process is investigated
    corecore